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6.1 Introduction 
Published observations of plankton within the Great Barrier Reef (GBR) date back to Captain Cook’s 

northward passage through the lagoon, when he reported extensive ‘blooms’ of unknown origin. His 

ship log entry for August 28 1770 reads: 

The sea in many places is here cover’d with a kind of brown scum, such as sailors generally call 

spawn; upon our first seeing it, it alarm’d us thinking that we were amongst Shoals, but we found 

the same depth of water where it was as in other places. Neither Mr Banks nor Dr Solander could 

tell what it was although they had of it to examine. 

These were undoubtedly blooms of Trichodesmium8. However, it was not until the Great Barrier Reef 

Expedition of 1928 to 1929 that the first and only significant study of plankton in the region was 

undertaken74,100,29. Unfortunately, since then, there has been little emphasis placed on documenting 

and understanding the biodiversity and processes within plankton communities of the GBR.

Our approach here is to examine potential ways that climate change may alter plankton communities 

of the GBR in the future, focusing on the physical mechanisms that currently drive plankton 

productivity and composition. Many of the oceanographic and climatic features of the western Coral 

Sea and GBR region and the ways in which they may be influenced by climate change are detailed 

in Steinberg (see chapter 3). Smaller members of the plankton such as the viruses and bacteria are 

covered by Webster and Hill (see chapter 5). Key reef-associated organisms with planktonic life stages 

such as crown-of-thorns starfish, corals, fish and jellyfish, as well as the ecosystem-level responses 

such as their recruitment and patch connectivity, will be covered by Kingsford and Welch (see chapter 

18). Since there are no long time series of plankton data for waters of the GBR for assessing climate-

related trends and their drivers, and few detailed studies in the laboratory or in the field, this review 

necessarily draws on relevant knowledge from other ecosystems, tropical where possible, and others 

when required.

6.1.1 Plankton

Plankton is a generic term describing organisms that have limited locomotive ability relative to the 

water bodies in which they live. A variety of organisms live in the plankton, ranging in size from 

viruses (femtoplankton) to large jellyfish (megazooplankton). Table 6.1 shows size classes of plankton 

in aquatic ecosystems, with some of their important members in GBR waters mentioned in the text.

Tropical plankton communities are highly diverse, containing organisms from almost all kingdoms, 

phyla and families. These organisms use their environment, its resources, and each other, in a wide 

variety of ways. The most common way to classify planktonic organisms is on the basis of size, which 

affects sinking, light utilisation, mobility and trophic status. Organisms with particular functional roles 

in the ecosystem (eg grazers and nitrogen-fixers) occur in a number of size classes, though in general 

primary producers tend to be smaller than grazers, which tend to be smaller than predators.



P
art II: Sp

ecies an
d

 
sp

ecies g
ro

u
p

s

123Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 6

:  V
u

ln
erab

ility o
f G

reat B
arrier R

eef p
lan

k
to

n
 to

 clim
ate ch

an
g

e

Table 6.1 Size classes of plankton in aquatic ecosystems67. Sizes are reported in µm (micrometres) 
and mm (millimetres)

Size class Size range Representative organisms Functional groupings

Femtoplankton Less than 0.2 µm Viruses Parasites

Picoplankton 0.2 to 2 µm Archaea, bacteria, cyanobacteria 
(eg Synechococcus), 
Prochlorophytes (eg 
Prochlorococcus)

Primary producers, 
saprophytic heterotrophs, 
nitrogen-fixers

Nanoplankton 2 to 20 µm Cyanobacteria, diatoms, flagellates 
(autotrophic, heterotrophic)

Primary producers, 
grazers, predators, 
nitrogen-fixers

Microplankton 20 to 200 µm Ciliates (including foraminifera), 
coccolithophores, diatoms, 
dinoflagellates, copepod juveniles

Primary producers, 
grazers, predators

Mesoplankton 0.2 to 20 mm Amphipods, appendicularians, 
chaetognaths, copepods, 
cyanobacteria (eg Trichodesmium 
colonies), thaliaceans (doliolids 
and salps)

Primary producers, 
grazers, predators, 
nitrogen-fixers

Macroplankton 20 to 200 mm Euphausiids, heteropods, jellyfish, 
larval fish, mysids, pteropods (eg 
Cavolinia longirostris), solitary salps

Grazers, predators

Megaplankton Greater than  
200 mm

Jellyfish, colonial salps Grazers, predators, 
primary producers

This chapter focuses on the best studied plankton, primarily the phytoplankton and mesozooplankton. 

Key groups within the phytoplankton that we discuss are the cyanobacteria, dinoflagellates and 

diatoms. Within the mesozooplankton, we concentrate on the copepods, because this has been  the 

most studied group and they are numerically the most abundant. Copepods constitute 63 percent 

of mesozooplankton abundance on tropical continental shelves72, and somewhat more, about 80 

percent, in the waters of the GBR70.

6.1.1.1 Biodiversity

Phytoplankton communities in the GBR ecosystem are diverse and cosmopolitan in character, comprising 

a mixture of oceanic forms with global pan-tropical distributions, and assemblages of diatoms and 

dinoflagellates109 found in coastal and upwelling regions worldwide. There are no known phytoplankton 

species endemic to the GBR. A three-year survey of the microphytoplankton in the 1970s produced 

a species list of 220 diatoms and 176 dinoflagellates93. The colonial nitrogen-fixing cyanobacterium 

Trichodesmium episodically accounted for a significant proportion of the microphytoplankton in lagoon 

samples, with abundances inversely correlated with those of diatoms92.
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Recent studies using size fractionation of phytoplankton communities show that phytoplankton 

biomass and productivity are dominated by picoplankton-sized organisms, such as the phototrophic 

cyanobacteria Synechococcus (approximately 1 to 2 micrometres) and Prochlorococcus (approximately 

0.6 micrometres36,19,20,21. Both of these genera are present as genetically identifiable, physiologically 

adapted strains82,45 rather than as morphologically identifiable species. 

Zooplankton communities in GBR waters are similar to those of other tropical or subtropical coasts, 

and may include endemic species in bays and estuaries78,79. Copepods are the most speciose group of 

zooplankton in the GBR (Table 6.2). The most comprehensive species list for the zooplankton of the 

GBR is from a study nearly 80 years ago, where Farran29 identified 193 species of pelagic copepods. 

However, such early plankton studies used nets with mesh sizes greater than 200 micrometres, as 

widely recommended for northern temperate plankton, but which miss the numerically dominant 

and smaller (less than 200 micrometres) copepod species in GBR waters (eg Parvocalanus crassirostris, 

Oithona attenuata and O. nana). Based on collections with nets of finer mesh, McKinnon et al.81 added 

a further 11 species of small copepods.

Table 6.2 Meso- and macrozooplankton biodiversity recorded by the Great Barrier Reef Expedition 
of 1928 to 1929

Taxon Number of species

Siphonophora110 32

Doliolida100 3

Salpida100 6

Appendicularia100 8

Pteropoda (Thecosomata and Gymnosomata)100 15

Heteropoda100 3

Mysidiacea108 23

Euphausiacea108 14

Copepoda29 193

Chaetognatha17 12

Reef-associated zooplankton assemblages comprise a mixture of open-water and demersal or 

emergent species, such as amphipods, cumaceans, decapods, mysids, ostracods and polychaete 

worms107,111. Larger zooplankton, such as the pteropods Creseis spp. and Cavolinia longirostris, are also 

present, and are particularly abundant in December and January respectively100. Salps (Thaliacea) can 

occur sporadically in great abundance100. 

6.1.1.2 Distribution across the GBR

Phytoplankton studies spanning the width of the GBR ecosystem have demonstrated a strong onshore–

offshore gradient. Communities in nearshore waters are morre frequently dominated by diatoms93 

because of more consistent nutrient inputs and greater nutrient availability from adjacent terrestrial 

sources and shallow sediments. Diatom-dominated assemblages within GBR waters are therefore 
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diagnostic of enhanced or persistent nutrient inputs into a region. Diatoms achieve dominance 

after disturbances, for brief periods at least, because they have faster intrinsic growth rates32 than 

picoplanktonic cyanobacteria34. The difference in response times between the flagellate grazers of 

picoplankton (days) and the metazoan grazers of microplankton diatoms (weeks) also contributes to 

the persistence of diatom blooms. By contrast, communities in oligotrophic (low nutrient) outer-shelf 

and oceanic waters are dominated by picoplankton-sized unicellular cyanobacteria (Synechococcus) 

and prochlorophytes (Prochlorococcus), together with nitrogen-fixing cyanobacterial rafts of 

Trichodesmium and characteristic assemblages of open-ocean dinoflagellates92, 93, 20, 21.

Mesozooplankton communities also show cross-shelf patterns, with distinct inshore and offshore 

assemblages103,115,80. Inshore and estuarine zooplankton communities, where temperatures can 

seasonally exceed 30°C, are dominated by small copepods81. Most (62%) of the mesozooplankton 

biomass is comprised of organisms less than 350 micrometres in size, and regional differences in 

zooplankton community composition are very small, at least within the inshore community81.

These marked cross-shelf changes in plankton composition are a result of gradients in the physico-

chemical properties of water. These gradients are determined by the dynamic balance between 

terrestrial inputs of nutrients, water movements alongshore, and oceanic exchanges. The cross-shelf 

extent of terrestrial influence is governed by bathymetry, the limited cross-shelf extension of river 

plumes, and the magnitude of a northward-flowing, wind-driven coastal current. As a result, nearshore 

waters are insulated to some degree from mixing with inter-reef waters on the outer shelf64,73. A variety 

of indicators show that the direct effects of runoff from the land are restricted to the nearshore zone 

10 to 20 km in width41,68,104. Conversely, at the seaward end of the gradient, upwelled intrusions of 

the Coral Sea thermocline episodically inject nutrient-rich water onto the outer shelf5,38. On occasion, 

large intrusions of Coral Sea water can extend almost the full width of the GBR lagoon38.

6.1.2 The role of plankton in the GBR

Phytoplankton account for approximately half the global primary production, and consequently 

play a major role in cycling of atmospheric carbon dioxide (CO2). They are also the major primary 

producers in the GBR ecosystem37. Approximately 70 percent of the estimated 2.2 x 105 tonnes of 

carbon (C) fixed daily by primary producers in the GBR shelf ecosystem originates from phytoplankton 

production (58 x107 tonnes C per year) and, of this, two-thirds is fixed by picoplankton38.

Micro- and mesozooplankton are the basis of food webs supporting oceanic and many coastal 

fisheries. Plankton and suspended non-living organic particles directly support a wide variety of 

suspension-feeding organisms and planktivorous fish on coral reefs. In addition, most benthic 

macroalgae, invertebrates and fish have a planktonic life stage that is dispersed by currents.

Plankton inhabit and dominate (both numerically and by mass) the largest habitat within the GBR, the 

pelagic ecosystem. Within the GBR, which has an area-weighted average water depth of 36 metres, 

this ecosystem has a total water volume of over 7200 km3. By contrast, coral reefs comprise about  

6 percent of the area within the GBR Marine Park69.
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6.1.2.1 Production and energy flow

GBR waters are characterised by rapid rates of phytoplankton growth, pelagic grazing and 

remineralisation40. In situ growth rates for the dominant phytoplankton species range from 

approximately one to several doublings per day. Fast growth results in a high demand for nutrients 

and, given the low ambient concentrations of dissolved nitrogen and phosphorus, rapid cycling 

occurs. Ammonium cycling times range from hours to a few days, and phosphate and nitrate cycling 

times are typically less than a few days40. The cyanobacterium Trichodesmium plays an important 

role in the ecosystem by fixing significant quantities of atmospheric nitrogen. One estimate of new 

nitrogen fixation suggests that the contribution of Trichodesmium is at least of the same order as that 

entering via riverine discharge12.

Despite the relatively high rate of primary production, mesozooplankton in GBR waters appear 

to be food limited70,77,80,81. Grazing experiments indicate that essentially all picoplankton biomass 

production and 62 percent of the nanoplankton production are consumed daily by microzooplankton. 

Approximately 30 percent of the production by nano- and microphytoplankton is grazed by 

mesozooplankton97. The balance of pelagic production either is respired within the water column, 

or settles to the ocean floor. Furnas et al.39 estimated that 25 to 100 percent of particulates in the 

water column fall to the ocean floor each day, and must therefore be an important driver of benthic 

ecosystems. Assuming a primary production rate of 0.67 grams C per metre squared per day40 and 

copepod production of 8.5 milligrams C per metre squared per day81, the transfer efficiency between 

these trophic levels is only 1 percent, supporting the hypothesis that microbial food chains (ie the 

microbial loop) dominate waters of the GBR.

Some indication of the importance of mesozooplankton in the GBR can be gained by calculating the 

flux of organic matter through this compartment from both in situ production and import of biomass. 

Based on a rate of copepod production in shallow inshore regions of the GBR of approximately 8.5 

milligrams C per metre squared per day81, we calculate that in situ copepod production in the entire 

GBR is greater than 630,000 tonnes C per year. Though copepods are the most important group 

numerically, other types of zooplankton that have received less attention are likely to add significantly 

to pelagic production. For example, appendicularians grow faster than any other multicellular 

organisms57 and can be almost as abundant as copepods in GBR waters, although there are no 

estimates of their production in the region.

There is also likely to be a significant import of oceanic plankton into the GBR from the Coral Sea. 

Brinkman et al.15 estimated oceanic inflow into the GBR of 0.58 Sv (1 Sv = 1,000,000 cubic metres per 

second). Assuming an average biomass of 100 milligrams per cubic metre (wet weight of zooplankton 

greater than 200 micrometres) in the Coral Sea70, this would equate to an annual import of 1.83 

million tonnes wet weight, equivalent to 110,000 tonnes C.

6.1.2.2 Pelagic–benthic linkages

Plankton are an important food resource for many components of the GBR ecosystem. Soft corals 

have been shown to graze picoplankton carried onto coral reefs28, and scleractinian corals are effective 

zooplankton feeders105. Planktivores make up the largest trophic guild of fishes living at shallow depths 
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on the faces of GBR coral reefs114, both by weight and by number. Reef-associated planktivorous fish 

are a diverse group that differ in their degree of dependence on plankton or suspended particulate 

matter for food, and partition their feeding activity into different reef zones51. These fishes remove 

most of the mesozooplankton from the water prior to it impinging on the reef face. In open waters, 

megafauna such as manta rays, whale sharks and some species of turtles are also dependent on 

plankton for food.

Though the contribution of particulate food to reef ecosystems is poorly quantified at larger scales, 

there have been some attempts to quantify the contribution of plankton and suspended particulate 

material to individual reefs. Fabricius and Dommisse27 measured depletion rates of suspended 

particulate material in tidal channels at the Palm Islands and estimated a carbon removal rate by soft 

corals of approximately 900 grams C per metre squared per year, similar to estimates made in the 

Red Sea by Yahel et al.116. These studies suggest that soft corals remove an order of magnitude more 

organic matter from the overlying water than hard coral-dominated reef flats. In turbid coastal waters, 

some hard corals are able to compensate for low light levels by increasing heterotrophic feeding 

activity6. Holzman et al.56 showed that actively swimming zooplankton avoid the benthic boundary 

layer (approximately 1.5 metres thick) of Red Sea coral reefs, below which there is high plankton 

predation by fishes84. Hamner et al.51 estimated that the flux of zooplankton to ‘the wall of mouths’ 

on the face of Davies Reef (central GBR) was 0.5 kilograms per metre per day. At specific locations, 

the interaction of strong currents and bottom topography may act to greatly amplify the contribution 

of zooplankton to coral reefs via trophic focusing43.

An important component of the pelagic environment that is receiving greater recognition as a 

significant food resource for coral reefs and other habitats is marine snow. Marine snow is the 

assemblage of largely organic particles or aggregates that are visible to the naked eye (generally 

greater than 0.5 mm). Marine snow is formed by aggregation of organic material from a variety of 

sources including polysaccharides from diatoms65 and discarded appendicular houses1. Aggregates 

are a rich substrate for the growth of micro-organisms, which in turn are concentrated and available 

to larger-particle consumers such as mesozooplankton, macroplankton and fish. These large particles 

or aggregates facilitate the settling of organic material onto coral reefs. The extent and importance 

of this trophic link between pelagic production and the reefs of the GBR ecosystem are yet to be 

adequately quantified.

6.1.3 Critical factors regulating plankton communities

The abundance and growth of planktonic organisms are directly influenced by several climate 

stressors that will respond to climate change. These include water temperature, ocean chemistry, 

light, ultraviolet radiation (UVR) and nutrient enrichment. We believe, however, that the direct impact 

of these climate stressors on plankton species and communities will be overshadowed by the indirect 

influence of climate change on oceanographic processes that affect the mixing and advection of 

water masses. We have a limited understanding of how climate change will affect light, nutrient 

enrichment, mixing and advection of water masses at local and regional scales. Therefore, in assessing 

these factors, a range of scenarios is considered. 
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6.1.3.1 Temperature

All plankton are poikilothermic and thus are directly influenced by water temperature26. More broadly, 
studies in other regions of the world have shown that plankton growth and development60,46,66, 

abundance95, distribution9, and timing of blooms24 are all influenced by temperature. However, these 
studies were conducted in temperate regions with marked seasonal temperature changes and thus 

should be applied with some caution to tropical regions.

6.1.3.2 Ocean chemistry

Over the last 200 years, oceans have absorbed 50 percent of the anthropogenic CO2 injected into 
the atmosphere, causing chemical changes that increase the proportion of dissolved CO2, lower 
pH (approximately 0.1 pH units) and decrease the saturation state of carbonate minerals (calcite, 
aragonite) in the water99. Effects of ocean acidification and increased carbonate dissolution will 
be greatest for plankton species with calcified (calcium carbonate) shells, plates or scales. These 
organisms include coccolithophorids, foraminifera, molluscs, echinoderms, and some crustaceans. 
For these organisms, sea water has to be saturated with carbonate to ensure that, once formed, their 
calcium carbonate structures do not redissolve. Acidification reduces the carbonate saturation of sea 
water, making calcification more difficult and dissolving structures already formed.

All phytoplankton obtain dissolved CO2 by passive diffusion, but this can lead to carbon limitation 
at times of rapid demand. To increase the efficiency of CO2 utilisation, many types of phytoplankton 
have evolved CO2-concentrating mechanisms to actively transport and accumulate inorganic 
carbon44,10. An increase in dissolved CO2 may well increase the proportion of species that are only 
capable of passive diffusion of CO2.

Increases in dissolved CO2 can also change the nutritional composition of phytoplankton, such 
as decreasing the carbon to nitrogen ratio and increasing carbon to phosphorus and nitrogen to 
phosphorus ratios11. Additionally, the proportion of unsaturated fatty acids can decrease, as well  
as the patterns of macromolecular synthesis. This may have a flow-on effect on growth and 
reproduction of zooplankton, and increase the production of marine snow, hence affecting nutrient 
and carbon cycling.

6.1.3.3 Light and ultraviolet radiation

Many copepod species are sensitive to changing ambient light levels. Light is the most important cue for 
zooplankton diel vertical migration and emergence, and has been implicated as a cue in the copepod 
swarming behaviour that occurs on GBR coral reefs50. For example, Oithona oculata forms small swarms 
around coral heads, whereas larger Acartia australis swarms form around coral heads and blanket the 

bottom of reef lagoons76. In late summer, Centropages orsinii can also form swarms in the deeper parts 
of reef lagoons. Although the mechanism behind the formation of zooplankton swarms is not well 
understood, we do know that light is an important determinant of copepod aggregations18,4. 

Diel migration patterns in GBR holoplankton communities appear to be weak, though studies to date 
on vertical migration of GBR zooplankton are equivocal30,81. In contrast, emergent zooplankton are a 
striking feature of the night time plankton within coral reefs102,2,107. Even small differences in light, such 
as occur on moonlit versus non-moonlit nights, can cause changes in the composition of emergent 
zooplankton assemblages3.
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The highly energetic ultraviolet radiation (UVR) component of sunlight penetrates the surface layers 

of the ocean and may have detrimental effects on plankton. In the last quarter of the 20th century, 

there has been an increase in UVR reaching the surface of the earth due to thinning of the protective 

ozone layer by anthropogenic ozone-depleting substances such as chlorofluorocarbons, halons and 

hydrochlorofluorocarbons22. Since the implementation of the Montreal Protocol in September 1987 

to reduce emissions of such substances, stratospheric ozone levels have stabilised. Most climate 

models show that the ozone layer will recover and thicken throughout the 21st century22, and 

presumably UVR will also decline75, although there remains uncertainty in the timing of the ozone 

thickening because of the complexity of atmospheric chemical processes62.

6.1.3.4 Nutrient enrichment

Large-scale oceanographic and atmospheric drivers that influence nutrient input and mixing processes 

include: (i) circulation patterns, (ii) rainfall and the coupled runoff of sediment and nutrients, (iii) 

frequency and intensity of shelf-break intrusions and topographic upwelling, (iv) frequency and 

intensity of cyclonic disturbance, (v) wind stress and its effects on sediment resuspension, vertical 

mixing and coastal current dynamics. These atmospheric and hydrodynamic processes interact 

in complex ways (Figure 6.1), influencing the physical and chemical attributes of the water 

column that regulate food web structure, productivity, and dispersal of plankton communities. 

Figure 6.1 Complex interrelationships between atmospheric and hydrodynamic drivers, effects on 
physical and chemical processes, and biological consequences
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Global warming affects several atmospheric and oceanographic processes including the Coral Sea 

circulation, monsoonal dynamics, wind stress and cyclones, all of which change the physico-chemical 

environment of the GBR with impacts on food web structure and function.

Phytoplankton productivity, biomass and community composition in the GBR lagoon are most 

strongly influenced by event-driven processes affecting the input or availability of nutrients (Figure 

6.2). These processes include terrestrial freshwater runoff33, rainfall38, sediment resuspension following 

cyclones74,112, upwelling from the Coral Sea thermocline5,38 and lateral exchanges of oligotrophic 

surface water from the Coral Sea15. Nutrient input events occur episodically throughout the year, but 

they occur most often during the summer wet season. Phytoplankton communities developing after 

such events are characterised by assemblages of fast-growing diatoms92,31,32,35. For example, a large 

diatom-dominated phytoplankton bloom throughout the central GBR followed Cyclone Winifred in 

198631. Liston70 observed increases in zooplankton biomass, particularly of herbivorous copepods, 

after Cyclone Charlie in 1989, and McKinnon and Thorrold80 reported significant increases in copepod 

biomass and production rates in the Burdekin River flood plume. Climate change factors that influence 

the frequency, intensity or duration of the wet season and its associated nutrient inputs will therefore 

have a significant effect on the composition and productivity of phytoplankton communities.

Figure 6.2 Effects of a nutrient enrichment event, using a flood plume example, on plankton 
abundance, composition and production of marine snow

Nutrients

Rapid phytoplankton growth rates lead to 
high nutrient demands

Phytoplankton is deposited on the sediment
as marine ‘snow’ 

Organic matter is remineralised making 
dissolved inorganic nutrients bioavailable

Nutrient uptake by phytoplankton

Grazing by zooplankton, predominantly
copepods, is food-limited

The cyanobacteria Trichodesmium fixes
large quantities of nitrogen during blooms

Nutrients

Increased marine ‘snow’  production

More remineralisation of organic matter

Increased nutrient uptake by phytoplankton

Increased grazing by zooplankton

Ambient ‘Events’

Flood plumes carry nutrients

Increased phytoplankton productivity
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In terms of large-scale oceanographic processes, climate-driven changes to the intensity of the 

South Equatorial Current, which flows westward across the Coral Sea, will directly affect the strength 

and volume of the southward-flowing East Australian Current (EAC) and the northward-flowing 

Hiri Current. Changes in the intensity of the EAC, in particular, directly affect the strength of the 

southward-flowing residual current through the southern half of the GBR. This in turn influences 

inter-reef mixing and dispersal and water residence times within the lagoon. The strength of the EAC 

influences the intensity and frequency of shelf-break upwelling along the southern half of the GBR 

through geostrophic adjustments in the thermocline depth along the continental slope.

The frequency and size of upwelling events in the central GBR are dependent upon interactions 

between regional wind stress (strong south-easterly, calm or northerly) and the depth of the Coral Sea 

thermocline which is in part, determined by the strength of the EAC. Seasonal wind stress patterns 

are influenced by the dynamics of the northern Australian monsoon and interannual ENSO dynamics. 

Upwelling is likely to be more frequent when there is a stronger monsoon (more prevalent northerly 

winds) or during La Niña periods and weaker during stronger SE trade winds. Furnas and Mitchell35 

describe midshelf blooms of cells greater than 10 micrometers in size, mainly diatoms, in water 

advected sufficiently inshore to have a residence time of about one week. These pulses of production 

by large phytoplankton cells result in more efficient energy transfer to higher trophic levels and 

increased secondary production. Wind stress from the south-easterly trade winds is also the primary 

driver for the northward-flowing coastal current along the entire GBR. This current and the shear 

zone between it and the southward-flowing residual current are partly responsible for the retention 

of terrestrial materials near the coastline. Finally, strong winds over the GBR also cause resuspension 

of bottom sediments in depths less than 20 metres. Resuspension is a source of nutrients to coastal 

plankton, but also increases turbidity and results in a decrease in photosynthetic depth.

Changes in the intensity and duration of the summer monsoon will influence the quantity of 

freshwater inputs to the GBR, either directly as rainfall or indirectly as terrestrial runoff. The volume 

of terrestrial runoff and its source within the GBR catchment, in turn, have a direct effect upon the 

quantity of sediment and nutrients entering the GBR. During periods of heavy runoff, the inshore 

plankton community can extend out as far as the midshelf reefs103. McKinnon and Thorrold80 were 

able to detect an increase in secondary production (as copepod egg production) subsequent to a 

flood event, and an elevation in zooplankton biomass that lasted two months after the event.

Cyclones produce large regional (103 to 104 km2) disturbances with enhanced nutrient inputs, 

mineralisation and plankton production. Liston70 found that both nutrients and chlorophyll concentrations 

increased in Bowling Green Bay subsequent to a cyclone. However, the strongest signal was observed in 

zooplankton abundance and biomass, which showed a fourfold increase two weeks later. Such event-

driven pulses in production may have significant implications for food availability for planktivorous fish, 

larval fish and invertebrate larvae, especially if these events coincide with spawning events.

Our understanding of how plankton communities of the GBR will respond to this complex 

array of atmospheric and hydrodynamic drivers can be summarised in Figure 6.3. Other factors, 

including acidification, UVR and cloudiness are considered in section 6.2. We envisage the plankton 

community as a continuum of states, ranging from those dominated by picoplankton, Trichodesmium 

and gelatinous zooplankton (pelagic tunicates), to those dominated by diatoms and crustacean 

zooplankton (copepods). Even this is simplistic, as many states may exist at the same time in different 
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parts of the GBR. Local or regional nutrient enrichment is the key determinant of the state of the 

plankton community; elevated nutrient conditions lead to short and efficient food webs dominated by 

copepods that are high-quality food resources for planktivorous fish, corals and ultimately piscivorous 

fish, seabirds and mammals, whereas low nutrient conditions lead to a long and inefficient food web 

that supports a far lower biomass of higher trophic levels. 

Figure 6.3 How physical drivers and stressors regulate plankton community interactions and dynamicsa

6.2 Vulnerability
Planktonic organisms all have short life cycles: hours to days for phytoplankton, seven to ten days for 

copepods, and weeks to months for macrozooplankton52. In the warm and typically sunny waters of the 

GBR, the entire phytoplankton community essentially turns over on a daily basis. Dominant copepod 

species have generation times in the order of a week or two. This means that plankton organisms and 

communities respond quickly to changes in their physical environment and, as such, are sentinels of 

environmental change that respond more rapidly than longer-lived animals such as fish, birds and 

mammals. It also means that the impact of climate change on event-scale processes will be particularly 

important. 

a  Acidification, UVR and cloudiness are considered in section 6.2.
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6.2.1 Changes in water temperature

6.2.1.1 Exposure – water temperature

Exposure of plankton to increased water temperatures is unavoidable. The GBR currently exhibits 

considerable variation in temperature (Figure 6.4), both seasonally and over its 15 degrees of latitudinal 

extent from Torres Strait (9° S) to Lady Elliott Island (24° S). Although the water column is generally well 

mixed, vertical temperature differences can exceed 5°C during intrusion events from the Coral Sea38. 

Consequently, direct effects of small temperature changes on plankton will likely be minimal given the 

temperature range already encountered within the waters of the GBR.

Figure 6.4 Variation in sea surface temperature on the Great Barrier Reef (Courtesy Mike Mahoney, AIMS)

32313029282726252423222120191817
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6.2.1.2 Sensitivity – water temperature

Culture studies106 indicate that species with tropical and subtropical distributions have growth 
temperature ranges that encompass the temperature range in the GBR at the present and the 
range likely in the near future (ie warming by 1 to 2°C), but with optima less than 30°C. In most 
cases, however, these experiments have been carried out with temperate strains, so potential 
regional adaptations to warmer temperatures are not apparent. Optimal growth for the dominant 
picophytoplankton species Synechococcus and Prochlorococcus in the GBR was found to be between 

20 and 30°C34. Studies of Synechococcus and Prochlorococcus in the Atlantic Ocean have shown that 
Synechococcus growth peaked at 28°C, while Prochlorococcus peaked at 24°C83. 

Growth rates of copepods are faster at warmer temperatures60, although this is not always achieved 
in the GBR because of food limitation. The Q10 of copepods is approximately 3 (ie a 10°C change 
in temperature results in a threefold change in physiological rates such as growth). Small inshore 
copepods such as Parvocalanus crassirostris, Oithona attenuata and O. nana occur in estuaries where 
maximum summer water temperatures exceed 30°C79. P. crassirostris thrives at these temperatures, 
with growth rates to 1.2 per day at 29°C in the Caribbean57. Available evidence indicates that 
copepod growth and egg-production rates in waters of the GBR exhibit little seasonal variation and 
are primarily regulated by food availability rather than temperature70,80,77,81. However, generation 
times of the common coastal copepod Acrocalanus gibber decrease by 25 percent with a 5°C rise 
in temperature77. In addition, copepod body length typically declines with increasing temperature, 
though differences in condition (dependent upon food supply) often obscure a causative relationship 
between weight and temperature77.

6.2.1.3 Impacts – water temperature

As individual plankton species have their own thermal optimum and limits for growth, warming will 
have differential effects on the growth of individual species. Changes in temperature are more likely 
to directly affect metabolic processes (growth, respiration) rather than overall community biomass, 
particularly if plankton communities are resource limited (nutrients, food), and overall productivity 
may not change greatly. There may also be an enhancement of stratification due to the increase 
in temperature in the GBR, which will favour picoplankton, Trichodesmium and pelagic tunicates. 
Change in phytoplankton community composition and productivity will have flow-on effects to the 
productivity of zooplankton grazers. 

6.2.1.4 Adaptive capacity – water temperature

Most tropical plankton species have relatively broad temperature ranges relative to daily and annual 
temperature fluctuations in the GBR. While the warmest temperatures encountered in the GBR 
lagoon and adjacent estuarine waters are above the published optimal growth temperatures for 
many species, these species can still survive and grow. Our understanding of temperature responses 
based on laboratory studies is constrained by the fact that individual species often have substantial 
strain variation. Therefore, there may be undescribed strains with higher thermal optima, improving 
the ability of individual species to adapt to change42,13,101. It is unknown whether individual species 
in local plankton populations have higher thermal optima than those used in experimental studies, 

but a changing environment would select for individuals and species better able to grow and survive 

under changing conditions. 
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There is some evidence however, that not all species are able to genetically adapt quickly enough 

to tolerate the projected oceanic warming rate. In such cases, species with preferences for warm 

water have expanded their ranges towards the poles, and species with cooler-water preferences have 

retracted to higher latitudes9. Despite many plankton species having a fairly catholic distribution 

throughout the GBR, it is likely that there will be some southward movement of tropical species, with 

a concomitant range contraction of subtropical species at the northern extent of their range in the 

southern GBR. For example, the highly venomous box jellyfish (Chironex fleckeri) is at the southern 

limit of its range in North Queensland and may expand its range further south as waters warm.

Warming may also result in earlier periods of peak abundance. This has been observed for many 

terrestrial groups including the earlier flowering of daffodils and the earlier arrival of migratory 

birds90,98. No work has been done on the timing of maximum plankton abundance in the GBR, but 

observations from temperate waters may provide some clues despite the much greater seasonality 

at such high latitudes. In the North Sea, temperature thresholds cue spawning and influence the 

development of larval stages24,46,66. Larvae of echinoderms, lamellibranchs, fish, and decapods are 

temporary members of the plankton (meroplankton) and their timing is sensitive to temperature24,46. 

Data from the North Atlantic have shown that the timing of peak abundance for these larvae is more 

than a month earlier now than 50 years ago24. If echinoderm larvae in the GBR respond similarly, 

peak larval abundances of crown-of-thorns starfish could appear earlier in the year. Warming could 

also lead to the earlier production of meroplanktonic larvae such as medusa stages of box jellyfish 

(Chironex fleckeri).

6.2.1.5 Vulnerability and thresholds – water temperature

Plankton are vulnerable to ocean warming, as they inhabit the GBR waters throughout their life, they 

are poikilothermic and have short generation times. Worldwide no plankton species are known to 

have become extinct, but the possibility of extinctions cannot be discounted. Individual plankton 

species can persist as cryptic populations (below the threshold of detection by sampling methods). 

The greatest effect of temperature on plankton in the GBR is likely to be on species composition and 

metabolic fluxes.

6.2.2 Changes in ocean chemistry

6.2.2.1 Exposure – ocean acidification and increased dissolved CO2

Plankton cannot escape exposure to changes in ocean chemistry, such as increased dissolved CO2 

and ocean acidification.

6.2.2.2 Sensitivity – ocean acidification

Plankton groups with calcium carbonate structures will be sensitive to ocean acidification, though it is 

possible that physiological stress as a result of acidification may occur in a broader range of organisms. 

Calcified plankton differ in their susceptibility to acidification depending on whether the crystalline 

form of their calcium carbonate is calcite or aragonite. Calcite has a higher stability (is less soluble) 

than aragonite, making it less susceptible to dissolution. Coccolithophores (calcifying phytoplankton), 

foraminifera (protist plankton), and non-pteropod molluscs produce calcite, the more stable form of 
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calcium carbonate. Coccolithophorids show reduced calcite production and an increased proportion 

of malformed liths at increased CO2 concentrations96. Pteropods are the most sensitive planktonic 

group because their shell is composed of aragonite, which will be subject to increased dissolution 

under more acidic conditions88. 

6.2.2.3 Impacts – ocean acidification and increased dissolved CO2

The direct effect of ocean acidification on calcifying zooplankton will be to partially dissolve their 

shells, increasing shell maintenance costs and reducing growth. Foraminifera contribute a significant 

proportion of the sediments in sandy regions of the GBR. Acidification will deform the calcite scales 

of coccolithophorids, but this group of phytoplankton occurs only sporadically on the GBR and is 

found more frequently in the Coral Sea (Furnas, unpublished data), although the coccolithophorid 

community there is diverse49.

Pteropods and heteropods are relatively uncommon members of GBR zooplankton assemblages, 

though the pteropod Cavolinia longirostris can form aggregations in summer100. C. longirostris is likely 

to be the plankton organism most sensitive to climate-induced change in pH.

Declining pH may also alter the growth rates of photosynthetic organisms. In particular, changes in 

pH will affect nutrient uptake kinetics, altering rates of growth and photosynthesis. Changes may 

also occur in phytoplankton cell composition, which could affect their nutritional value for higher 

trophic levels.

Phytoplankton species lacking carbon-concentrating mechanisms may well increase in dominance 

under higher concentrations of dissolved CO2. However, the proportion of these species in tropical 

waters is unknown, but some coccolithophores are able to increase photosynthetic rate in response 

to elevated CO2. 

6.2.2.4 Adaptive capacity – ocean acidification

Within the next several centuries, first the aragonite and then the calcite saturation state of GBR 

waters may decline below levels needed for shell formation and maintenance in calcifying plankton 

organisms. Orr et al.88 suggested that pteropods would not be able to adapt quickly enough to live in 

undersaturated conditions. Undersaturation of aragonite and calcite in sea water is likely to be more 

acute at higher latitudes and then move toward the equator. Therefore, there is unlikely to be a refuge 

for these species further south as temperatures warm.

6.2.2.5 Vulnerability and thresholds – ocean acidification

Pteropods, with their aragonite shells, are highly vulnerable, while coccolithophorids, foraminifera and 

some crustaceans, with their calcite shells and liths, are less vulnerable. Pteropods are likely to decline 

and may eventually disappear in response to ocean acidification on the GBR. No quantitative work 

on thresholds has been conducted, but experiments on the pteropod Clio pyrimidata at 788 parts per 

million CO2 for 48 hours88 and the coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica at 

780 to 850 parts per million96 led to shell and lith deterioration respectively. These experiments were 

both conducted at CO2 levels approximating those that are likely to exist around the year 2100 under 

a business-as-usual scenario of greenhouse gas emissions.
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6.2.3 Changes in light and ultraviolet radiation

6.2.3.1 Exposure – light and ultraviolet radiation

Plankton that inhabit the euphotic zone (greater than 1% of surface light) are sensitive to changes 

in light and ultraviolet radiation (UVR). The exposure of plankton to light and UVR is dependent 

upon surface light conditions, dissolved coloured substances and particulate matter in the water 

column85.

6.2.3.2 Sensitivity – light and ultraviolet radiation

Changes in light intensity affect phytoplankton growth. Many species of zooplankton will also be 

sensitive to changes in light, as they exhibit swarming and vertical migration behaviours.

Many neustonic copepods (residing close to the surface) such as the Pontellidae have pigments to 

reduce damage caused by UVR. Some copepod species on the GBR contain carotenoid pigments 

with UVR-absorbing properties7. Temporary members of the zooplankton that reside close to the sea 

surface (eg eggs and larvae of fish) can be sensitive to UVR and are likely to receive higher doses.

6.2.3.3 Impacts – light and ultraviolet radiation

Persistent levels of cloud cover reduce light levels and thus primary production, with concomitant 

declines in secondary production and food for higher trophic levels. In addition, as light is also the cue 

for both swarming and vertical migration, any changes in the light field will impact these zooplankton 

behaviours.

UVR impacts the growth, mobility and cellular stoichiometry and the relative dominance of many 

phytoplanktonic organisms. Tropical regions like the GBR naturally receive high UVR doses. Studies 

have found that UVR affects nitrogen uptake and thus the growth and productivity of important 

phytoplankton species23. UVR negatively influences several physiological processes and cellular 

structures of phytoplankton including photosynthesis, cell motility and orientation, algal life span, and 

DNA machinery54,55,71. These effects compromise the ability of phytoplankton to adapt to changing 

environmental conditions47,48. They also result in changes in cellular elemental stoichiometry including 

increased cellular carbon content, decreased chlorophyll a content, and less frequent cell division 

resulting in increased cell size54.

Irradiation of the copepod Acartia clausi with high doses of UVR resulted in curtailed adult survival and 

reduced fecundity61. A 20 percent increase in UVR resulted in the death of eight percent of anchovy 

larvae59. UVR can also damage eggs and larvae of copepods, crabs, and fish25.

UVR can cause changes in community structure because small cells are more prone to deleterious 

effects of UVR than large cells, and have comparatively high metabolic costs to screen out damaging 

UVR91. Changes in the cellular elemental stoichiometry of phytoplankton caused by UVR often 

decrease the nutritional value of phytoplankton. Negative effects of such altered food quality can 

propagate to zooplankton63. Further, UVR lowers copepod fecundity, increases naupliar mortality and 

affects vertical distribution61,14.
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6.2.3.4 Adaptive capacity – light and ultraviolet radiation

Some phytoplankton may partially acclimate to or repair UVR damage, although this involves metabolic 

costs that reduce the energy available for cell growth and division. Mycosporine-like amino acids 

confer protection against UVR damage in some taxa11. Many UVR-tolerant species produce dense 

surface blooms, some of which are toxic; leading to the possibility that increased UVR may increase the 

incidence of toxic surface blooms.

6.2.3.5 Vulnerability and thresholds – light and ultraviolet radiation

We suggest that the overall vulnerability of plankton to changes in the light and UVR regime is relatively 

low; moreover, UVR is likely to decline in the longer term. The tropics are naturally high-light and high-

UVR environments. At this time, there has been insufficient research to report thresholds of vulnerability 

for tropical species.

6.2.4 Nutrient enrichment

6.2.4.1 Exposure

Changing nutrient inputs to the water column of the GBR will affect planktonic species and communities.

6.2.4.2 Sensitivity – nutrient enrichment

All phytoplankton species are affected by nutrient enrichment processes to some degree. Diatoms 

are likely to be particularly responsive to changes in nutrient availability. Zooplankton are not directly 

affected by nutrient enrichment.

6.2.4.3 Impacts – nutrient enrichment

Changes in oceanographic and weather processes, which affect nutrient inputs to the GBR ecosystem 

(eg upwelling, runoff and resuspension), will have direct influences on plankton abundance, community 

structure, and production and thereby affect higher trophic levels (Figure 6.3). 

There are likely to be changes in the abundance of phytoplankton, with lower nutrient conditions 

leading to less plankton, and enhanced nutrient conditions resulting in greater plankton abundance 

(Figure 6.5). The cyanobacterium Trichodesmium is either toxic or of poor nutritional quality to most 

copepods – only some pelagic harpacticoids graze Trichodesmium86,87. Phytoplankton and zooplankton 

community structure will also change, with picoplankton and the nitrogen-fixing cyanobacterium 

Trichodesmium likely to be more important if nutrient input processes decline (Figure 6.5). As a result, 

under low nutrient conditions, small non-crustacean zooplankton and gelatinous filter-feeding groups 

(salps, doliolids, appendicularia) will be more prominent, while enhanced nutrient conditions may favour 

larger crustacean zooplankton. Under nutrient enrichment, diatoms are likely to increase, leading to 

more crustacean zooplankton and carnivorous medusae and ctenophores.

Oceanographic processes, which affect residual current strengths on the GBR shelf, will also affect the 

longshore mixing and dispersal of plankton organisms or life stages and residence times within the 

GBR system. Climate-driven changes in the relative balance between wind stress and the southward 

residual current in the southern half of the GBR will influence the cross-shelf extent of coastal plankton 

assemblages.
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Figure 6.5  Future scenarios under two different nutrient enrichment regimes
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6.2.4.4 Adaptive capacity – nutrient enrichment

The plankton community will adjust to changes in nutrient inputs and availability by changing 

its composition. The relative abundance of Picophytoplankton, Trichodesmium and gelatinous 

zooplankton is likely to increase under a low nutrient regime, while diatoms and large zooplankton 

are likely to be more important under a high nutrient regime.

6.2.4.5 Vulnerability and thresholds – nutrient enrichment

The plankton community is affected by changes in the degree of nutrient enrichment. Whether this 

constitutes vulnerability is open to debate. The concept of a threshold may not apply in this situation. 

We consider there is a continuum between the two end-member states (Figure 6.5).

6.3 Linkages with other ecosystem components
Altered phytoplankton and zooplankton abundance, composition, productivity and timing of 

occurrence will have a cascading effect on higher trophic levels of the GBR. Any decline (or 

increase) in overall abundance, growth and trophic efficiency of phytoplankton and zooplankton 

communities is likely to lead to the decline (or increase) in higher trophic levels. Larvae of almost all 

fishes feed on copepod nauplii at first feeding58, and therefore variations in the timing and extent of 

copepod reproduction could influence patterns of recruitment of fishes and economically important 

invertebrates, especially those with a long larval life, such as crayfish. This will be discussed more 

fully in Kingsford and Welch (see chapter 18). Synchronous and infrequent events in plankton (eg 

coral spawning) may be affected by changes in the magnitude and timing of primary and secondary 

productivity, and changes in the predators present. Changes in runoff regime may affect the life cycles 

of stingers and productivity of the coastal zone where they feed.

Pteropods contribute to the diet of carnivorous zooplankton, myctophids and other zooplanktivorous 

fish, and a reduction in pteropods may have ramifications higher up the pelagic food web. Over long 

timescales, the calcite-producing foraminifera are likely to be negatively impacted by reduced pH. 

6.3.1 Constraints to adaptation

Smaller plankton species have shorter life cycles and hence presumably greater scope for genetic 

recombination. They are therefore more likely to adapt physiologically than larger plankton. However, 

predation rather than physiological stress is the principal source of mortality in plankton organisms. 

Local oceanographic factors determine the movement of water across natural climatic gradients much 

larger than those that we expect from climate change alone. Plankton organisms are therefore more 

likely to be carried into and out of the GBR ecosystem before any significant adaptation could occur. 

If adaptation does occur, it will most likely be through regional-scale selection of genotypes more 

closely attuned to warmer temperatures and shorter generation times. 
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6.3.2 Interactions between stressors

At large scales, atmospheric and hydrodynamic variables interact to produce a complex temporal 

and spatial pattern of nutrient enrichment (Figure 6.1). At local scales, the predictive value of 

temperature as a stressor is often overridden by concurrent resource limitation. In the GBR ecosystem, 

phytoplankton growth rates are more dependent upon nutrient availability than temperature (Furnas 

unpublished data). In estuarine ecosystems, which are less likely to be nutrient limited, models based 

on biomass, photic depth and incident irradiance outperform models based on temperature alone16. 

Similarly for zooplankton, growth rates are related more to food availability than temperature.

Another interaction between stressors is between UVR and the depth of the mixed layer. A decrease 

in the depth of the mixed surface layer, coupled with an increase in turbulence, increases exposure of 

phytoplankton to UVR and the chance of algal cells receiving harmful doses63,53. UVR can also interact 

with nutrient availability, as enhanced UVR can increase the availability of essential macronutrients via 

increased photochemical dissolution of organics, thus enhancing phytoplankton growth94,89,113. 

6.3.3 Threats to resilience

The plankton community as a whole is resilient to changes in climate-related stressors such as large-scale 

nutrient enrichment, temperature, acidification, UVR and winds. Plankton groups that are not favoured 

by the prevailing conditions will be restricted to certain favourable environments in space and time, and 

the plankton community is able to reorganise to maintain key functions and processes. The continuum 

between different states summarised in Figure 6.3 has different trophic efficiencies; the ability of 

communities dominated by picoplankton and pelagic tunicates to provide food for higher trophic levels 

is limited in comparison with communities dominated by diatom and large zooplankton.

6.4 Summary and recommendations

6.4.1 Major vulnerabilities to climate change

Apart from some estuarine copepods, there are no known endemic species of holoplankton in the 

GBR ecosystem. There is a low probability of extinction risk; no plankton species worldwide are 

considered to have become extinct, although many plankton species are cryptic, difficult to identify, 

or undescribed, and almost none have any regular assessment of their status. Therefore, as individual 

plankton taxa may not be particularly vulnerable (the pteropod Cavolinia is an exception) and there is 

also insufficient information for any individual taxa to assess potential vulnerabilities, we have taken a 

functional group approach. Table 6.3 summarises findings on the vulnerability of plankton functional 

groups from section 6.2. The column order of the stressors reflects our judgment of the perceived 

vulnerability of plankton and ecosystem consequences to each stressor, namely nutrient enrichment, 

temperature, ocean chemistry, and light and UVR.

We consider that the most likely changes in plankton communities will be a consequence of 

alterations in atmospheric and oceanographic variables that drive nutrient enrichment processes, and 

that changes in other stressors will probably have a smaller secondary impact on plankton and the 

ecosystems they support.
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6.4.2 Potential management responses

As most of the climate change impacts on plankton are driven by large-scale oceanographic, 

weather and climate processes, few local management responses are possible. Further, because of 

the enhanced levels of CO2 in the atmosphere and rates of fossil fuel burning, the process of ocean 

acidification is irreversible over the next several centuries. The only practical way to ameliorate these 

effects is to reduce CO2 emissions to the atmosphere. This requires a global solution. 

Ocean acidification will have direct consequences on some plankton groups. Broad-scale addition of 

chemicals to the ocean to re-equilibrate the pH is not practical, and it will take thousands of years for 

ocean chemistry to return to a condition similar to that of pre-industrial times99.

Perhaps the only action likely to succeed at the regional scale would be the reduction of terrestrial 

runoff of sediment, nutrients and chemical pollutants through widespread changes in land use 

practices within the GBR catchment. This would help maintain the structure and functioning of 

existing plankton communities in the GBR lagoon. Efforts to make such changes are now under way 

through the Reef Water Quality Protection Plan. 

6.4.3 Further research

The lack of information on the state of GBR plankton communities currently hinders policymakers 

from being able to fully address the impacts of climate change on the GBR. This is a consequence of 

the lack of long-term (multi-decadal) plankton datasets in the region. The longest dataset for a crude 

system variable such as plankton biomass (eg chlorophyll a) commenced in 1989, covering coastal 

waters between Cape Tribulation and Cape Grafton. During this period, there has been a slight, non-

linear decrease of 30 percent in chlorophyll, although there is no clear evidence that this change is 

climate driven. Much of the impact of climate change in plankton systems elsewhere has not been 

apparent from such bulk indices but from species-specific changes in distribution, timing of life-cycle 

events or in changes of rate processes. 

As part of an overall environmental monitoring program for the GBR, consideration should be given 

to the inclusion of one or more plankton monitoring sites (perhaps based at island research stations) 

to track long-term changes in plankton biomass and community structure, particularly for those few 

forms (eg pteropods) that are at particular risk from ocean acidification.

Species-specific sampling of plankton over larger areas is more difficult. Ocean colour satellites 

provide information on bulk indices such as surface chlorophyll, but no species-specific information 

on phytoplankton or zooplankton. One possibility is to use the continuous plankton recorder, a robust 

yet cost-effective device for capturing phyto- and zooplankton that is towed behind commercial 

vessels. A route is beginning in 2007 from Brisbane to Fiji, but none is currently planned closer to 

the GBR.

Most of the climate-influenced changes in GBR plankton communities will result from changes in 

atmospheric and oceanographic variables that drive transport, mixing and nutrient input processes. 
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Fortunately, many of the critical environmental variables underpinning these processes such as water 

temperature, cloud cover, solar radiation, UVR and wind stress are already routinely collected as part 

of the research and monitoring of the GBR (eg Australian Institute of Marine Science weather stations 

and Transports of the East Australian Current System moorings) and need to be continued. 

In terms of critical research foci in the future, we can highlight two areas. First, we have insufficient 

knowledge of the role of marine snow as a linkage between pelagic and coral reef ecosystems. Studies 

so far have provided tantalising glimpses into this linkage but much remains to be discovered. Second, 

in this review we have identified that nutrient input processes are critical to understanding future 

climate change impacts on the GBR. The big unknown is the direction of these processes – whether 

inputs are going to increase or decrease and whether the spatial and temporal pattern of inputs will 

change. Hydrodynamic and geochemical modelling efforts focused on the intensity of the boundary 

currents bordering the GBR and in the Coral Sea (East Australian Current and Hiri Current) as well as 

upwelling dynamics and riverine runoff are pivotal to answering these questions. Only with nutrient–

phytoplankton–zooplankton models embedded within these hydrodynamic models will we be able to 

understand and forecast the response of the plankton community and thus higher trophic levels. 
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