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KEY FINDINGS 
This synthesis contains light thresholds for seagrass species in the Great Barrier Reef World 

Heritage Area (GBRWHA). The thresholds can be applied to ensure protection of seagrasses 

from activities that impact water quality and the light environment over the short-term, such 

as coastal and port developments. Thresholds for long-term maintenance of seagrasses are 

also proposed.  

• The synthesis provides clear and consistent guidance on light thresholds to apply in 

managing potential water quality impacts to seagrass. 

 

• All available information on biological light thresholds was tabulated and conservative 

management thresholds were identified to ensure seagrass protection. 

 

• Acute management thresholds are suited to compliance guidelines for managing short-

term impacts and these and are the focus of this synthesis. Long-term thresholds are 

suited to the setting of water quality guidelines for catchment management.  

 

• The synthesis identified key areas where further information is required, including: 

◦ species for which almost no information on light thresholds exists; 

◦ location and population-specific thresholds particularly for the most at-risk 

species; 

◦ definitions of desired state to underpin the development of long-term light 

guidelines to meet them;  

◦ the effect of spectral quality on light thresholds; and, consideration of cumulative 

impacts (temperature, nutrients, sedimentary conditions) on acute and long-term 

light thresholds. 

 

• Light management thresholds for acute impacts are presented for twelve species. 

Colonising species are the most sensitive to light reduction (i.e. lowest thresholds) and 

have the shortest time to impact while larger, persistent species have higher light 

thresholds and a longer time to impact.  

• The recommended acute management thresholds are ready for application, as the 

conservative approach (higher light threshold, shortest time to impact) for species with 

low confidence should ensure protection to seagrass meadows at risk from acute light 

stress. 
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EXECUTIVE SUMMARY 
Seagrass meadows occur in habitats with high risk of exposure to water quality deterioration 

from coastal development and terrestrial discharge. Improvement in water quality is one of 

four challenges identified in the Reef 2050 Long-term sustainability plan that will improve 

meadow condition and support ongoing development of resilience. To meet water quality 

improvement targets, the GBRMPA sets compliance standards for activities such as coastal 

development, which have the potential to threaten water quality and ecosystems of the GBR. 

Seagrass meadows are the habitat most likely to be directly affected by coastal and port 

developments due to their proximity inshore and along sheltered parts of the coast. 

Development approvals therefore require that water quality, and specifically light, are 

maintained within acceptable levels. Until recently, there has been little biologically relevant 

information available to set appropriate thresholds. Furthermore, the GBRMPA has water 

quality guidelines that can be used to set targets for catchment management.  

 

Water quality affects light reaching seagrass meadows, and light in turn controls the 

productivity, abundance and distribution of seagrasses. Therefore, guidelines for light are 

recommended as a management trigger for seagrass meadows at risk from declining water 

quality. Use of light as a management trigger for dredge management in Gladstone Harbour 

has set a precedent for incorporating light into guidelines for similar future activities. 

Furthermore, recent research into seagrass light thresholds and mature light monitoring 

programs (>8 years) are providing the information required to develop these guidelines. Up 

to now, most of this information has been spread amongst multiple reports and scientific 

publications.  

Therefore, the aims of this project were to: 

• provide clear and consistent guidance to environmental managers and regulatory 

authorities on light thresholds to apply for GBR seagrasses; 

• synthesise current state of knowledge of light effects on seagrasses; 

• develop a conceptual framework to guide threshold application; 

• deliver a table of light thresholds and associated indicators of stress; and 

• highlight critical information gaps.  

 

All available information on seagrass light requirements was tabulated. This highlighted that 

there are two critical time-scales for consideration of light thresholds – acute and long-term 

thresholds – and these also correspond to guidelines for acute compliance standards, and 

water quality guidelines for catchment management, respectively. These findings were used 

to recommend acute management thresholds for 12 species occurring in the GBR. The 

management thresholds range from 2 to 6 mol m
-2

 d
-1

 depending on species (Table 1). The 

thresholds are presented together with an integration time (1 – 14 days), time to impact (7 – 

50 days) and confidence score (1 – 5). Colonising species that dominate in deepwater 

habitat are the most sensitive to light reduction and therefore they have the lowest light 

thresholds (2 – 6 mol m
-2

 d
-1

) and shortest time to impact (14 – 28 days) depending on 

species. Opportunistic species have higher light thresholds (5 – 6 mol m
-2

 d
-1

) and longer 

time to impact (28 – 50 days). Recommended light management thresholds were similar for 

persistent species 5 – 6 mol m
-2

 d
-1

), but with longer time to impact (50 days); however, there 
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is very little information available on light thresholds for persistent species and they have the 

lowest confidence scores. The highest confidence in management thresholds was given to Z. 
muelleri (rating of 2 where 1 is the highest) as a range of approaches including in situ 

monitoring and experimental manipulation, as well as lab experiments have verified the 

thresholds, but for limited populations. The conservative approach applied (higher light 

threshold, shortest time to impact) for species with low confidence should ensure that the 

recommended light management thresholds provide protection to seagrass meadows at risk 

from acute light stress.  

 

Table 1: Suggested management light thresholds of acute water quality impacts for GBRWHA seagrasses 

Species Classification 

Suggested 
management 

threshold 
(mol m-2 d-1) 

Integration 
time  

(days)* 

Time to 
impact 

(days)** 

Confidence 
Score+ 

Halophila decipiens Colonising 2 1 14 3 

Halophila ovalis^ Colonising 2 7 14 3 

Halophila ovalis^ Colonising 6 7 28 3 

Halophila tricostata Colonising 2.5 1 14 5 

Halophila spinulosa Colonising 2.5 7 28 4 

Zostera muelleri 
Colonising/ 

opportunistic 6 14 28 2 

Halodule uninervis 
Colonising/ 

opportunistic 
5 14 40 3 

Cymodocea rotundata Opportunistic 6 14 28 5 

Cymodocea serrulata Opportunistic 5 14 50 4 

Syringodium isoetifolium Opportunistic 6 14 28 5 

Thalassodendron 
ciliatum 

Persistent 5 14 50 5 

Thalassia hemprichii Persistent 5 14 50 4 

Enhalus acoroides Persistent 5 14 50 5 

*Averaging time used to describe light history and as first signal to trigger management plan  

**Time to impact expected and a management plan should be implemented before this time 

^Two-step threshold applies due to species plasticity, see full synthesis document for details  

+
Confidence score is detailed in the following table 

 

Water quality guidelines for longer time frames will be based on long-term light thresholds, 

but these are not as clearly defined owing to a paucity of data. As an estimate, 10 – 13 mol 

m
-2

 d
-1

 is likely to prevent light limitation for the long-bladed species (but this range is not 

suitable for deepwater species, which require less light). Defining site-specific desired state 

and then setting light targets to achieve it will advance the establishment of long-term light 

thresholds.    

 

The following recommendations can be made on the basis of this synthesis: 

1. adopt recommended acute light management thresholds; 
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2. develop a method to determine desired state so that long-term light thresholds can be 

advanced for contribution to regional water quality guidelines; 

3. develop locally-specific acute thresholds for application in local management; and, 

4. explore the effects of cumulative impacts (temperature, nutrients, sedimentary conditions) 

and light quality, on acute and long-term light thresholds. 
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1. INTRODUCTION 

1.1 Guidelines and compliance standards in the GBRWHA 

There are a number of threats to water quality within the Great Barrier Reef World Heritage 

Area (GBRWHA), including terrestrial discharge laden with sediments, nutrients and 

pesticides (Brodie, et al., 2013; Coles, et al., 2015; Fabricius, et al., 2014), and coastal 

development can locally threaten water quality through dredge material handling and the 

suspension of fine sediments  (Erftemeijer and Robin Lewis III, 2006; Grech, et al., 2011; 

Hughes, et al., 2015; York, et al., 2015). The overarching aim of the Reef 2050 plan is “to 

ensure the GBR continues to improve on its outstanding universal value every decade 

between now and 2050 to be a natural wonder for each successive generation to come” and 

water quality is one of four key challenges in achieving this goal (Great Barrier Reef Marine 

Park Authority and Queensland Government, 2015). Water quality improvements are tracked 

through the flagship monitoring program, the inshore Marine Monitoring Program (e.g. 

Martin, et al., 2014) and reported through the Reef Water Quality Protection Plan’s annual 

report card (http://www.reefplan.qld.gov.au/measuring-success/report-cards/). This is coupled with 

local monitoring from over 90 monitoring programs and detailed seagrass monitoring in high 

risk locations such as Queensland Ports (Coles, et al., 2015; Rasheed, et al., 2014).  

 

According to Reef 2050, seagrass meadows are one of the habitats that best represent the 

key ecological and biological processes of the Great Barrier Reef (hereafter referred to as 

the Reef); provide habitat for biodiversity including threatened species; increase resilience to 

climate change; and provide economic and community benefits (Great Barrier Reef Marine 

Park Authority and Queensland Government, 2015). With this ecosystem health role in mind, 

seagrass condition is an important indicator for acute water quality impacts and for long-term 

water quality guidelines in the Reef (Great Barrier Reef Marine Park Authority, 2014).  

 

 

1.1.1 Compliance standards for short-term impacts 
In support of the water quality objectives set out in guiding policies and legislation such as 

Reef 2050 and the Environmental Protection Act 1994, state and federal regulators set 

protocols for monitoring condition relative to aquatic ecosystem guidelines. These are to be 

implemented by proponents wanting to undertake discrete activities that have the potential to 

threaten the water quality and ecosystems within the GBRWHA. These protocols outline 

recommendations for water quality guidelines, sample number, sampling frequency, and 

reporting protocols (e.g. statistics). The protocols themselves are Reef-specific (where 

possible), and are based on scientifically derived information.  

In some locations, such as Gladstone Harbour, investment into research and monitoring has 

enabled the development of locally-specific compliance standards for management of a 

major dredging operation. This included management thresholds for light with the explicit aim 

of maintaining seagrass biomass (Gladstone Ports Corporation Pty Ltd 2014). Light was 

included in the management framework because it was recognised that seagrass condition 

and resilience is largely driven by incoming light, and research had been undertaken that 

could enable light to be used as a threshold during dredging scenarios. This light-based 
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management plan has set a precedent for inclusion of light in future compliance monitoring 

(see case study below).  

 

In a recent review of dredge management priorities, the development of ecological tolerance 

thresholds for regulation, was highlighted as one of three key priority areas for future 

investment (Schaffelke, et al., 2016). There has been considerable research into light 

requirements and thresholds for seagrasses of the Reef (e.g. Chartrand, et al., 2012; 

Chartrand, et al., Subm; Collier, et al., 2012a; Collier, et al., In Press; Mckenna, et al., 2015b) 

and monitoring to characterise light levels within seagrass meadows (Bryant, et al., 2014; 

McKenzie, et al., 2016). Most of this research has focussed on short-term light thresholds 

that are applicable to compliance monitoring (detailed below) and integration into 

management frameworks. However, the research findings, apart from the Gladstone case 

study, have not been readily available to managers to incorporate into compliance standards.     

 

1.1.2 Water quality guidelines for long-term targets 
For establishing longer-term and regional water quality guidelines (i.e. not linked to a 

development activity), the Great Barrier Reef Marine Park Authority (GBRMPA) prepared 

water quality guidelines for the Great Barrier Reef (2010) with trigger levels that are 

protective of a desired ecosystem state. These are developed for the Reef based on locally-

derived thresholds and local priorities, as recommended through the Australian and New 

Zealand Guidelines for Fresh and Marine Water Quality (ANZECC). If levels are outside the 

guidelines, it is a prompt for managers to take action. The guidelines focus on sediments, 

nutrients and pesticides, which are the main catchment run-off pollutants that affect water 

quality reaching the Reef. Reef 2050 outlines the procedures for adaptive management of 

the the Reef whereby guidelines are modified due to emerging threats and/or enhanced 

understanding (through research). Therefore, the GBRMPA, in collaboration with the 

Queensland Government, is taking the opportunity to implement additional guidelines 

through catchment-level schedules.   

 

Furthermore, the Queensland government prepares water quality guidelines for Queensland 

waters (generally superseded by local guidelines within the GBRWHA) to protect 

environmental values (EVs). These are derived from 1. direct measurement of biological 

impacts (e.g. experiments), or 2. acceptable departure from a reference condition 

(Department of Environment and Heritage Protection, 2009). As all of Queensland’s 

seagrass species occur within the Reef, the research undertaken on light requirements for 

seagrasses within the Reef are also relevant to the Queensland water quality guidelines.    
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1.2 GBRWHA seagrasses 

The GBRWHA includes one of the world’s greatest areas of seagrass (35,000km
2
) (Coles, et 

al., 2015). Across this range, seagrass inhabits estuarine (or semi-enclosed), coastal, reef 

and deepwater habitats. These are distributed in a cross-shelf gradient, except for deepwater 

habitats which occur throughout the Reef in water >10–15m. The inshore habitats (estuarine 

and coastal) are exposed with the greatest frequency to turbid and nutrient-enriched water 

from terrestrial discharge and resuspension (Devlin, et al., 2015; Fabricius, et al., 2014; 

McKenzie, et al., 2016). Reef habitats and mid-shelf deepwater habitats have infrequent 

exposure to terrestrial discharge. Cumulative risk is generally highest in the southern two 

thirds of the GBRWHA within highly developed ports and urbanised catchments where the 

threats from terrestrial discharge are combined with local development pressures (Grech, et 

al., 2011). 

 

 

 

Figure 1: Seagrass habitats of the GBRWH. Adapted from McKenzie, et al. (2016) 
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There are 15 seagrass species in the GBRWHA from three different families (Waycott, et al., 

2004). The dominant species varies among the habitats. For example, Zostera muelleri 
predominantly occupies habitat with high mud content. In contrast, Thalassia hemprichii and 

Cymodocea rotundata occupy coarse carbonate sand with low mud content and therefore 

occur more commonly in reef habitats. Halodule uninervis and Halophila ovalis are 

generalists, occurring in a range of habitat types. These, together with Zostera muelleri are 

the most common species in shallow habitats (<5m), while Halophila species dominate in 

deeper water habitat.   

 

Seagrass species can be classed as colonising, opportunistic, or persistent (Figure 2); 

(Kilminster, et al., 2015). Persistent species occupy relatively stable habitats and form 

enduring meadows (e.g. Thalassia and Enhalus), while colonising species tend to be 

transitory. Colonising and opportunistic species succumb to disturbances (such as light 

limitation) the most quickly and this is due, in part, to lower overall storage capacity (Collier, 

et al., 2012b; Longstaff and Dennison, 1999). Yet these are the most dominant species in the 

the Reef, particularly in the inshore regions where water quality presents the greatest risk. 

These colonising and opportunistic species have been the focus of research into light 

requirements owing to their sensitivity to low light and their occurrence in at-risk inshore 

habitat.  

 

The long-term presence of colonising species in at-risk habitats can be attributed to their 

recovery traits, specifically, they can recolonise following small-scale disturbances (such as 

single short flood events), through rapid expansion (rhizome extension), and from seed 

banks (McKenzie, et al., 2016; Rasheed, 2004; Unsworth, et al., 2015). Despite this, they 

remain highly vulnerable to large-scale or repeated disturbances, with many examples 

throughout the Reef where they have not recovered, or are recovering very slowly following 

loss in 2009 – 2011 (McKenzie, et al., 2016; Rasheed, et al., 2014). The ecological effects of 

this loss (record dugong and turtle mortality in 2011 (Meager and Limpus, 2012), have been 

a reminder of the need to avoid seagrass loss by the implementation of appropriate 

management measures.  
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Figure 2: Dominant traits of colonising, opportunistic and persistent seagrass species. There are representatives 

from all 3 categories: colonising, opportunistic and persistent, within the GBRWHA and therefore these vary in 

their sensitivity to disturbances. Adapted from (Kilminster, et al., 2015). 

 

 

1.3 Impacts of light reduction on seagrass 

Seagrasses are dependent on light for photosynthetic carbon fixation, growth and biomass 

production. Among marine plants, seagrasses have relatively high light requirements 

because they invest in building and maintaining non-photosynthetic structure including 

rhizomes and roots (Dennison, et al., 1993). They are predominantly found in coastal 

regions, colonising sediment-rich banks in relatively shallow water in order access light and 

where nutrients are abundant to support growth (Collier and Waycott, 2009). These habitats 

are also at risk from terrestrial discharge and from coastal development. The availability of 

light limits their spatial distribution (depth range), and light limitation can drive seagrass loss 

(Chartrand, et al., Subm; Collier, et al., 2012a; Collier, et al., 2012b; Rasheed, et al., 2014).  

 

Variable water quality in coastal environments creates perpetually fluctuating light conditions 

(de los Santos, et al., 2010; Petrou, et al., 2013), which can quickly manifest into changes in 

plant physiology and ultimately affect morphology and abundance if light drops below a 

certain point (Ralph et al. 2007). Within the plant, strategies to cope with light reduction 

include: adjusting light harvesting capacity and the efficiency of light use (Abal, et al., 1994; 

Enríquez, 2005); adjustments to rates of growth and plant turnover (Collier, et al., 2012b; 

Collier, et al., 2009); and drawing upon carbohydrate reserves to maintain productivity 

(Burke, et al., 1996; Touchette and Burkholder, 2000). Molecular signalling drives seagrass 

responses to light limitation through the expression of stress-inducible genes (Schliep, et al., 
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2015).  However, despite these inbuilt capacities, seagrasses can be acutely sensitive to 

reductions in light beyond “typical” conditions, which leads to shoot and even meadow-scale 

seagrass loss with consequences for ecosystem function (Collier, et al., 2012a; Hughes, et 

al., 2008; McKenzie, et al., 2016; Petus, et al., 2014; Rasheed, et al., 2014).  

 

1.4 Approaches to monitoring and researching light thresholds 

Research into seagrass light thresholds has been undertaken using a number of 

approaches, including: 

1. in situ light measurements, which can show when reductions in benthic light coincide 

with seagrass loss (e.g. Chartrand, et al., 2012; Collier, et al., 2012a); 

2. in situ experiments, which test light thresholds within local site conditions (Chartrand, 

et al., Subm); 

3. minimum light requirements, which is the annually averaged daily light at the depth 

limit of the seagrass meadow (Longstaff, 2002); and, 

4. laboratory experiments, which enable detailed testing of light thresholds and 

cumulative effects (Collier, et al., 2012b; Collier, et al., In Press). 

 

In 2016, light is being monitored at 35 locations spanning more than 2000 km and covering 

all described habitat types (Figure 1), and in all 6 NRM regions within the GBRWHA and also 

into the Gulf of Carpentaria. Light is recorded using autonomous 2π loggers (Odyssey
TM

) that 

measure photosynthetically active radiation (PAR) with wiper units to keep sensors clean 

throughout deployment. Light is recorded as instantaneous light (µmol m
-2

 s
-1

) every 15 – 30 

minutes, and is summed to daily light (mol m
-2

 d
-1

), which integrates daily light exposure 

(Bryant, et al., 2014; McKenzie, et al., 2016). Defining the light environment in terms of daily 

light removes diurnal variability, but daily light is also highly variable among days. Daily light 

is therefore reported as a (rolling) average of the previous 14 days (Chartrand, et al., 2012) 

or 28 days (McKenzie, et al., 2016). This enables quantification of the recent light history and 

detection of trends.  The trends in light recorded in these monitoring programs are reported 

in multiple publications depending on the location and monitoring program (e.g. Bryant, et al., 

2014; Chartrand, et al., Subm; McKenna, et al., 2015a; McKenzie, et al., 2016). Seagrass 

monitoring, in high-risk areas such as urbanised centres, ports and near sources of terrestrial 

discharge, provides valuable information on ecosystem condition to inform management, 

planning and compliance of activities with the potential to impact on local seagrasses. 

Specifically, monitoring data is also used to test and validate light thresholds.  

 

1.5 About this report 

The aims of this project were to: 

• provide clear and consistent guidance to environmental managers and regulatory 

authorities on light thresholds to apply for seagrasses with the GBRWHA; 

• synthesise current state of knowledge of light effects on seagrasses; 

• develop a conceptual framework to guide threshold application; 
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• deliver a table of light thresholds guidelines and associated indicators of stress for 

key seagrass species in the Great Barrier Reef for immediate application by multiple 

end-users (i.e. managers, regulators, modelers etc); and, 

• highlight critical information gaps for species and thresholds to focus future research 

efforts. 

 

The following tables and associated text is a guiding document for managers and regulators 

to better understand what is known on the light required to sustain seagrasses within the 

GBRWHA. The report is separated into acute light thresholds typically impacts lasting less 

than 3 months), for which the majority of information is available and provides guidance for 

discrete coastal development activities, and long-term light guidelines for catchment-scale 

water quality concerns.  Detailed justification for each species is discussed as well as 

definitive knowledge gaps that limit our understanding and therefore capacity to set light 

thresholds for managing impacts to seagrass from both acute and chronic sources. 
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2. METHODOLOGY 

2.1 Tabulating light thresholds 

All information on seagrass light thresholds and light requirements were sourced from peer-

reviewed publications, the grey literature and unpublished work (unpub. results were 

restricted to that within the TropWATER group at JCU by the authors of this report). The 

search was undertaken for all species that occur in the Reef; however, all studies from the 

tropics and subtropics were sourced and therefore included results from south of the Reef 

(Moreton Bay and NSW) (Figure 3). The tables provide information on 12 seagrass species 

found within the GBRWHA. The number of studies varied among species ranging from 0 

(Cymodocea rotundata, Thalassodendron ciliatum and Syringodium isoetifolium) to 7 for 

Zostera muelleri (Table 2).  

 

Table 2: Number of studies or entries contributing to the light thresholds for each species. An entry refers to a 

piece of information, with more than one entry possible for each study.  Values in brackets are studies from con-

genera from the northern hemisphere used as supporting information only.  

Species Classification No. entries No. studies 
Halophila decipiens Colonising 4 3 

Halophila spinulosa Colonising 4 2 

Halophila tricostata Colonising 1 1 

Halophila ovalis Colonising 8 3 

Zostera muelleri Colonising/opportunistic 17 7 

Halodule uninervis Colonising/opportunistic 10 4 

Cymodocea rotundata Opportunistic 0 0 

Cymodocea serrulata Opportunistic 8 3 

Syringodium 
isoetifolium 

Persistent 0 0 (+2) 

Thalssodendron 
ciliatum 

Persistent 0 0 

Thalassia hemprichii Persistent 2 1 (+6) 

Enahlus acroides Persistent 1 1 

 

The biological light thresholds are defined as an intensity below which a significant negative 

change in seagrass physical condition was observed using monitoring data or experimental 

approaches. There are many indicators of seagrass light stress, and some of these may be 

early warning indicators of imminent loss (McMahon, et al., 2013; Ralph, et al., 2007; Roca, 

et al., 2016; Schliep, et al., 2015).  However, in this study, the focus has remained on 

abundance metrics because they are ecologically significant changes (representing loss of 

habitat function), sensitive to light reduction, and commonly measured (McMahon, et al., 

2013). This approach is consistent with recommended endpoints for water quality guideline 

derivation, which should be ecologically relevant (e.g. survival, growth and reproduction) 

(Batley, et al., 2014).  
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Figure 3: Spatial distribution of studies used in this report.  

 

 

 

2.2 Translating biological thresholds into management thresholds 

The recommended light management thresholds are more conservative than the biological 

thresholds derived from studies and long-term datasets. If light is maintained above these 

management recommendations, seagrass abundance (biomass, density, percent cover) and 

in turn, the structure and habitat function of the meadow should be preserved. Unlike the 

ecosystem threshold, management thresholds or water quality guidelines typically aim to 

achieve a pre-determined target such as no loss, undetectable loss, or a set level of 

acceptable loss (Collier, et al., In Press; Qian and Cuffney, 2011; Schneider, 2013). This 

approach (no, or undetectable loss) has been adopted in this report for light management 

thresholds.  

 

Duration of exposure has an effect on biological light thresholds, and it was identified that 

there were two important time-scales: 1. acute; and, 2. long-term/annual. These time-scales 

are carried through to the recommended light management thresholds, however the exact 

time separating acute vs long-term varies among species but typically fell in the range <40 

days for acute and 3 months – 1 year for long-term. Also shown is the biological response 

indicator and degree it was impacted (e.g. loss of biomass), as this can indicate how far 

beyond the “threshold” light reduction has pushed the biological response. Light thresholds 
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are expressed as a range in mol m
-2

 d
-1

 together with time (days) to impact of the seagrass 

species. The findings are presented from the most recent to the oldest studies. Species are 

grouped into life history strategies (colonising, opportunistic and persistent) (sensu. 

Kilminster, et al., 2015). Data were also grouped into meaningful entries. For example, if the 

same experiment was run for multiple days, then changing thresholds over time are shown 

within the same cell, as all other factors for the two entries are the same. Where conditions 

changed (e.g. new method, or new interactive factor was tested), then a new cell was 

created.  

 

2.3 Quantifying light  

The recommended unit for seagrass light thresholds is daily light (mol photons m
-2

 d
-1

, 

hereafter abbreviated to mol m
-2

 d
-1

), rather than percentage of surface irradiance (%SI), 

which is another commonly used light indicator. This is because daily light is the diurnally 

integrated light exposure and is affected by clouds, turbidity or other light reducing properties 

of the water. That is, it defines the light required for seagrass maintenance irrespective of the 

cause of light reduction. This is an important distinction (from using %SI) because it means 

that operations that could affect seagrasses need to consider the light history and condition 

of the meadow rather than just turbidity. For example, surface irradiance at Low Isles, Green 

Island and Dunk Island (Wet Tropics region) was 30.1 mol m
-2

 d
-1

, 33.4 mol m
-2

 d
-1

, and 31.9 

mol m
-2

 d
-1 

(2009 – 2015), respectively. At Magnetic Island (Burdekin) surface irradiance was 

23.6 mol m
-2

 d
-1

 while Gladstone Harbour (Fitzroy) was 29.8 mol m
-2

 d
-1

 (2014 – 2015; 

unpublished data). On average among these sites, surface light was 29.3 mol m
-2

 d
-1

. For 

comparison to studies presenting thresholds in %SI, 5 mol m
-2

 d
-1 

is around 16.8 %SI and 10 

mol m
-2

 d
-1

 is 33.6 %SI but this will vary depending on incoming solar irradiance. In studies 

where thresholds were not presented as daily light (in mol m
-2

 d
-1

), but rather as % surface 

light, or % reduction then daily light was calculated from information contained within the 

article, or within the region on surface light (in mol m
-2

 d
-1

). 
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3. Biological light thresholds for GBRWHA seagrasses  
The following tables and associated text is a guiding document for managers and regulators 

to better understand what is known about the light required to sustain seagrasses within the 

GBRWHA. This section details the biological light thresholds (i.e. measured thresholds), and 

the following section provides recommended management thresholds and guidelines that will 

provide protection to seagrasses at risk from water quality impacts.     

 

Experimental studies are generally limited in their treatment resolution (i.e. there is a set 

number of treatment levels), which usually means that the true “threshold” falls between 

treatment levels. Hence, interpretations of values in Tables, 3, 4 and 5 need to consider light 

levels in which there was both loss, and no loss. Some studies avoid this by taking different 

approaches. For example, the minimum light requirement (MLR) may be used as an annual 

average light level that a seagrass requires for survival. Other studies adopt a greater 

number of treatment levels, which can help resolve thresholds (e.g. Abal, et al., 1994) and 

enable alternate statistical approaches such as curve fitting to calculate thresholds (Collier, 

et al., In Press).  

 

There has been greatest investment into light requirements for the dominant coastal species of the Reef 
because they are the species most at risk from water quality impacts caused by coastal development and 
terrestrial discharge. These include H. ovalis, H. uninervis and Z. muelleri. These species are classified as 
fast growing colonising species, or the latter two are often considered opportunistic species (Kilminster, 
et al., 2015). This means that they are sensitive to environmental perturbations, with limited capacity for 

resistance. Generally, they are impacted after 28 days under light limitation ( 
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Table 4).  

 

Recent studies on deepwater seagrass species (H. decipiens, H. tricostata, H. spinulosa) 

have greatly expanded the available information on light requirements for these communities 

(Chartrand et al., unpubl.). These deepwater species generally grow under low light at depth, 

forming sparse meadows during the growing season (~Sep – Dec). These can completely 

die off (H. decipiens), or persist but at very low biomass (H. tricostata, H. spinulosa). H. 
decipiens, is particularly sensitive to light limitation with rapid loss of biomass after just 14 

days at 1.1 mol m
-2

 d
-1 

(Chartrand pers. comm, Table 3), or when the average growing 

conditions are 2 to 2.6 mol m
-2

 d
-1

 (Table 8). H. ovalis can be just as sensitive to low light 

(Chartrand, et al., 2012; Longstaff and Dennison, 1999) rapidly declining after just 12 – 16 

days, under very low light. However, H. ovalis can also occur in shallow high light habitats 

and so higher light thresholds have also been identified through a range of studies 

(Chartrand, et al., 2012; Collier, et al., In Press). H. spinulosa and H. tricostata can also 

occur in deepwater habitats, and are more tolerant of low light, likely due to greater 

investment into below-ground biomass and storage of reserves, which increases their 

tolerance to short-term light reduction. Hence impacts were observed after a longer time 

frame (30 days).  

 

The true opportunistic species and the persistent species tend to be more tolerant of periods 

below light thresholds. Despite this, the light levels leading to an impact can be similar for H. 
uninervis and Z. muelleri, but they take longer to take effect (e.g. Collier, et al., 2012b; 

Collier, et al., In Press). There is, however, considerably less known about the light 

requirements of the opportunistic and persistent species, with no information available for 

three species.  

 

Light thresholds are affected by exposure period and acute light stress is tolerated at lower light levels 
than long-term light stress. The light thresholds measured for Z. muelleri ( 
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Table 4) are plotted in Figure 4. Over the short-term (<40 days), measured light thresholds 

do not exceed 5.4 mol m
-2

 d
-1

. They can tolerate low light conditions by undergoing some 

photo-acclimation and by drawing on storage reserves (Ralph, et al., 2007), but as the time 

of exposure increases towards 28 – 40 days, the energetic imbalances caused by a 

reduction in photosynthetic rate leads to biomass loss. As the duration of light limitation is 

extended even further (>80 d), light thresholds increased to a maximum of 10.4 mol m
-2

 d
-1

 

(Figure 4). Hence the definition of an acute impact for this species is relevant for <40 days 

and long-term thresholds refers to impacts lasting ~80 days to annual time-scales. The effect 

of exposure time on light thresholds has been demonstrated for other species in some 

studies (Collier, et al., 2012b; Collier, et al., In Press), but there is insufficient information to 

enable the generation of such time plots for other species. The time over which an impact 

can be considered “acute” has been generated for these species using a similar approach 

i.e. the shortest duration in which light reduction takes effect.  

 

 

Figure 4: Daily light threshold (i.e. the light level causing an impact) and exposure time to that light level for Z. 
muelleri. Black dots show studies from within Queensland. The white stars are studies from NSW (Fyfe, 2003; 

York, et al., 2013), and the white triangle is an anomalous depth limit from Moreton Bay (Longstaff, 2002).  
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Table 4 light thresholds can be affected by water temperature (Chartrand, et al., Subm; 

Collier, et al., In Press). Higher temperatures may increase the rate of respiration (carbon 

loss), and therefore require higher light to drive photosynthetic rates in excess of respiratory 

loss (Collier, et al., 2011). Light thresholds could be influenced by a range of other factors 

including nutrient availability, herbicide exposure and sediment conditions. For example, 

herbicide exposure, at concentrations that are recorded in Reef coastal waters (0.4 µg L
-1

), 

has a potential shading equivalent of 10% based on declines in photosynthetic efficiency 

(Negri, et al., 2015). Furthermore, genetic composition/diversity can affect tolerance to 

disturbances (Reusch, et al., 2005), but this has not been tested for light thresholds. Where 

light thresholds are developed in situ (Chartrand, et al., Subm; Collier, et al., 2012a), the 

inherent site characteristics (e.g. sediment type and nutrient availability), are included in the 

derivation of the light threshold. However, how local environmental conditions affect these 

light thresholds is largely unknown. 
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Table 3: Summary of light thresholds for the colonising Halophila species 

Location Season/ 
temperature 

Impact Light intensity Time to 
Impact (d) 

Zone Study 
Location 

Notes Reference 

Halophila decipiens 

Green Island Oct Shoot loss 
No impact found 

1.1 mol m-2 d-1 

3.2 mol m-2 d-1 
14 
30 Tropical Lab  Chartrand et al in prep 

Green island Intra- & inter-
annual trends 

Above-ground biomass, 
shoot counts 2.1 mol m-2 d-1 

Growing 
seasonal 
av 

Tropical Deepwater  Chartrand unpubl. data 

US Virgin 
Islands ~20°C Growth rate and depth 

limit 4.4% SI  Tropical Subtidal  Williams and Dennison (1990) 

Halophila ovalis 
Magnetic 
Island 

Sep-Dec 
23°C 

Shoot density 
 

5.29±2.2 mol m-2 d-1 
8.99±3.11 mol m-2 d-1 

49 
98 Tropical Outdoor 

Experiment 
20% loss (80% 
protection) Collier, et al. (In Press) 

Magnetic 
Island 

Sep-Dec 
28°C 

Shoot density 
 

5.83±2.58 mol m-2 d-1 
9.97±2.67 mol m-2 d-1 

28 
98 Tropical Outdoor 

Experiment 
20% loss (80% 
protection) Collier, et al. (In Press)  

Gladstone Sep - Dec Biomass & 
Shoot density 

1.8  mol m-2 d-1 
6.5 mol m-2 d-1 

16 
30 

Sub-
tropical 

Intertidal 
experiment  Chartrand, et al. (2012) 

Moreton Bay 

Aug, 22°C 
Oct, 27°C 
Dec-Jan, 26-
30°C 

Total biomass (Expt A) 
Total biomass (Expt B) 
Total biomass (Expt C) 

0.1% SI 
0.1% SI 
0.1% SI 

12 
15 
14 

Sub-
tropical 

Outdoor 
Experiment 

23% loss 
63% loss 
59% loss 

Longstaff, et al. (1999) 

Gulf of 
Carpentaria July-Nov Total biomass 0.1 mol m-2 d-1 24 Tropical Intertidal 

experiment 63% loss Longstaff and Dennison (1999) 

Halophila spinulosa 

Abbot Point Oct Shoot loss 
No impact found 

1.1 mol m-2 d-1 

3.2 mol m-2 d-1 
30 
30 Tropical Lab  Chartrand et al in prep 

Abbot Point 
Intra- & 
inter-annual 
trends 

Above-ground biomass 1.9 mol m-2 d-1 
Growing 
seasonal 
av 

Tropical Deepwater  TropWATER unpubl. data 

Keswick Is 
(Mackay) 

Intra- & 
inter-annual 
trends 

Above-ground biomass, 
shoot counts 2.2 mol m-2 d-1 

Growing 
seasonal 
av 

Tropical Deepwater  TropWATER unpubl. data 

Moreton Bay May-June 
~20°C Root biomass 50 %SI (~14.8 mol m-2 d-1) ≤30 Sub-

tropical 
Outdoor 
Experiment 34% loss Grice, et al. (1996) 

Halophila tricostata 

Keswick Is 
(Mackay) 

Intra- & 
inter-annual 
trends 

Above-ground biomass, 
shoot counts 2.2 

Growing 
seasonal 
av 

Tropical Deepwater TropWATER unpubl. 
data Tropwater unpubl.  
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Table 4: Summary of light thresholds for the colonising/opportunistic Zostera muelleri and Halodule uninervis 

Location Season/ 
temperature 

Impact Light intensity Time to Impact 
(d) 

Zone Study 
Location 

Degree of impact Reference 

Zostera muelleri ssp. Capricorni  

Gladstone 
Sep – Dec  
May-June? 

Above-ground biomass, percent 
cover 
No loss 

≤5 mol m-2 d-1   
≤2 mol m-2 d-1   

28 – 42 
28 – 42 Sub-tropical 

Shading 
Intertidal 

~40% loss 
0% loss 

Chartrand, et al. 
(Subm.) 

Gladstone Sep – Dec  
Above-ground biomass, percent 
cover 

≤6 mol m-2 d-1   14 Sub-tropical In situ light  No loss 
Chartrand, et al. 
(Subm.) 

Gladstone 
Sep – Dec  
23°C 

Shoot density 
2.46±1.9 mol m-2 d-1 

7.4±1.9 mol m-2 d-1 
28 
98 Sub-tropical 

Outdoor 
Experiment 20% loss (80% protection) Collier, et al. (In Press) 

Gladstone 
Sep – Dec  
28°C 

Shoot density 5.43±1.77 mol m-2 d-1 
10.4±2.4 mol m-2 d-1 

28 
98 Sub-tropical 

Outdoor 
Experiment 20% loss (80% protection) Collier, et al. (In Press) 

Lake Macquarie, 
NSW 

24, 27, 30°C 
Above-ground biomass 
No impact found   

2.0 mol m-2 d-1 
4.8 mol m-2 d-1  ≤84 Sub-tropical 

Indoor 
Lab 

~50% loss 
0% loss 

York, et al. (2013) 

Magnetic Island 
 
Mar – May 
 

Shoot density 
1.2 mol m-2 d-1 

4.4 mol m-2 d-1 

9.5 mol m-2 d-1 

25 
46 
61 

Tropical 
Outdoor 
Experiment 

27% loss 
36% loss 
47% loss 

Collier, et al. (2012b) 

Port Hacking, 
NSW 

Feb – April 
~19°C 

Biomass 
No impact found  

1.7 mol m-2 d-1 
7.2 mol m-2 d-1 ≤86 Sub-tropical Lab 

99% loss 
0% loss Fyfe (2003) 

Moreton Bay Annual Depth limit of meadow (i.e. MLR) 10 mol m-2 d-1  
4.6 mol m-2 d-1  365 Sub-tropical Subtidal 

3-site mean 
1 site (considered 
anomalous) 

Longstaff (2002) 
Dennison and Abal 
(1999) 

Moreton Bay Mar – May 
23°C 

Shoot density &  
Total biomass 

30% SI (~9.25* mol m-2 d-

1) 
≤62 Sub-tropical 

Outdoor 
Experiment 

60% loss shoots  
35% loss biomass 

Abal, et al. (1994) 

Halodule uninervis 

Magnetic Island 23°C Shoot density, modelled threshold 3.8±2.3 mol m-2 d-1 
28 
98 

Tropical 
Outdoor 
Experiment 

No loss 
20% loss (80% protection) 

Collier, et al. (In Press) 

Magnetic Island 28°C Shoot density, modelled threshold 
4.15±6.11 mol m-2 d-1 

9.2±3.2 mol m-2 d-1 
49 
98 

Tropical 
Outdoor 
Experiment 

20% loss (80% protection) Collier, et al. (In Press) 

Magnetic Island Mar – May Shoot density 
0.2 mol m-2 d-1 

4.4 mol m-2 d-1 

9.5 mol m-2 d-1 

46 
61 
74 

Tropical 
Outdoor 
Experiment 

40% loss 
39% loss 
34% loss 

Collier, et al. (2012b) 

Magnetic Island Summer, 
>28°C 

Percent cover 4.0 mol m-2 d-1 ≤90 Tropical Subtidal 
50% loss in H. uninervis 
dominated meadow 

Collier, et al. (2012a) 

Gulf of 
Carpentaria  

Biomass  
Shoot density 

0.1 mol m-2 d-1 38-52 Tropical Intertidal 
~40% loss 
~34% loss 

Longstaff and Dennison 
(1999) 

Moreton Bay 
May-June 
~20°C 

Productivity (g DW m-2 d-1) 50% SI (~14.8 mol m-2 d-1) ≤30 Sub-tropical 
Outdoor 
Experiment 

20% reduction Grice, et al. (1996) 

*based on conversion using surface light and daily light from the same region, Moreton Bay in Longstaff (2002); ≤ indicates that measures were not made prior to this day 
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Table 5: Light thresholds for the opportunistic C. serrulata, Syringodium isoetifolium and the persistent T.hemprichii. 

Location Season/ 
temperature 

Impact Light intensity Time to 
Impact (d) 

Zone Study 
Location 

Notes Reference 

Cymodocea serrulata 
Opportunistic occurring in coastal, and reef habitat 

Magnetic Island 
Sep – Dec 
23°C 

Shoot density 
NA 
NA 

28 
98 

Tropical 
Outdoor 
Experiment 

No loss, no threshold 
could be calculated 

Collier, et al. (In Press) 

 
Sep – Dec 
28°C 

Shoot density 
3.61±2.37 mol m-2 d-1 

8.63±3.84 mol m-2 d-1 
49 
98 

Tropical 
Outdoor 
Experiment 

20% loss (80% 
protection) 

Collier, et al. (In Press) 

Magnetic Island Mar – May Shoot density 
0.2 mol m-2 d-1 

4.4 mol m-2 d-1 

9.5 mol m-2 d-1 

46 
61 
74 

Tropical 
Outdoor 
Experiment 

56% loss 
48% loss 
26% loss 

(Collier, et al., 2012b) 

Moreton Bay 
May – June 
~20°C 

Productivity 50% SI (~14.8 mol m-2 d-1) ≤30 Sub-tropical 
Outdoor 
Experiment 

38% reduction (Grice, et al., 1996) 

Syringodium isoetifolium 

Mauritus 
24°C  
28°C 
24 and 28°C 

Shoot length 
Shoot length 
Shoot density  

75% reduction 
21 
21 
70 

Sub tropical Subtidal 
Signif. increase 
Signif. increase 
No effect 

(Fokeera-Wahedally and 
Bhikajee, 2005) 

Florida 
Syringodium 
filiforme 

Annual 
Minimum light 
requirement 

24 – 37% SI  
(8.5 – 13.2 mol m-2 d-1) 

365 Tropical Subtidal Depth limit 
(Kenworthy and Fonesca, 
1996) 

Thalssia hemprichii 
Persistent occurring in coastal and reef habitat 

Magnetic Island Mar – May 
No impact -Shoot 
density 

0 
0.2 mol m-2 d-1 

102 Tropical 
Outdoor 
Experiment 

No impact detected# (Collier, et al., 2012b) 

Florida Thalassia 
testudinum 

 
Seagrass depth limit 
(MLR) 

18 – 32% SI  
(~6.4 – 11.4 mol m-2 d-1)* 

Annual Tropical Subtidal Depth limit 

(Choice, et al., 2014; Czerny 
and Dunton, 1995; Dixon, 
1999; Tomasko and Hall; 
Tomasko, et al.) 

Florida Thalassia 
testudinum  Shoot density 

16% SI (5.6 mol m-2 d-1)* 
13% SI (4.5 mol m-2 d-1)* 

365   
95% loss 
98% loss 

(Czerny and Dunton, 1995) 

# based on statistical re-analysis of data with species separated  
*In Czerny and Dunton Florida ambient light 50% SI = 17.8 mol, 100% SI = 35 
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4. MANAGEMENT GUIDELINES 
The following management guidelines are divided into 1) recommended light management 
thresholds for acute impacts and 2) light guidelines for long-term maintenance of seagrass in 
recognition that higher light may be required over the long-term (Figure 4). This is based on a 
synthesis of all known species-specific light data available to the authors at the time of 
publication relevant to the GBRWHA (see previous section for details).  
 
4.1 Recommended management thresholds for acute impacts  

Acute thresholds can be applied to short-term threats such as dredging or small-scale 
developments where the management goal is no physical loss of seagrass leaves or shoots. 
Recommended acute thresholds are tabulated (Table 6) and discussed in detail in this 
section. Long-term management thresholds are discussed in the following section.     

 
Table 6: Recommended management light thresholds for GBRWHA seagrasses. 

Species Classification 
Suggested 

management threshold  
(mol m-2 d-1) 

Integration  
time  

(days)* 

Time to 
impact 

(days)** 

Confidence 
Score+ 

Halophila decipiens Colonising 2 1 14 3 

Halophila ovalis^ Colonising 2 7 14 3 

Halophila ovalis^ Colonising 6 7 28 3 

Halophila tricostata Colonising 2.5 1 14 5 

Halophila spinulosa Colonising 2.5 7 28 4 

Zostera muelleri 
Colonising/ 
opportunistic 6 14 28 2 

Halodule uninervis 
Colonising/ 
opportunistic 

5 14 40 3 

Cymodocea rotundata Opportunistic 6 14 28 5 

Cymodocea serrulata Opportunistic 5 14 50 4 

Syringodium isoetifolium Opportunistic 6 14 28 5 

Thalassodendron ciliatum Persistent 5 14 50 5 

Thalassia hemprichii Persistent 5 14 50 4 

Enhalus acoroides Persistent 5 14 50 5 

*Averaging time used to describe light history and as first signal to trigger management plan 
**Time to impact expected and a management plan should be implemented before this time. See section case 
study for details 
+Confidence score is detailed in the following table 
^Species has a two-stage threshold due to species plasticity to growing light conditions. See text for further detail 

 
 

The recommended acute management thresholds are higher than maximum biological 
thresholds in order to increase confidence that they will provide protection under acute light 
stress (Chartrand, et al., Subm). For example, for Z. muelleri, the maximum short-term, acute 
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light threshold was 5.4 mol m-2 d-1 over 28 d, therefore the recommended management 
threshold is 6 mol m-2 d-1 with an expected time to impact after 28 days.  

 
An integration time of 14 days is recommended for Z. muelleri to account for recent light 
history of the meadow (Chartrand, et al., Subm). In practice, this refers to a rolling average of 
daily light recorded at the seagrass site, such that each day, the rolling average moves 
forward by one day to incorporate the most recent light. With recent advances in light 
measurement and telemeted data (e.g. Vision Environment 2012), daily light can be provided 
as live updates. The integration time is also a means to track progress towards meeting the 
target. If the 14-day rolling average falls below the threshold then this initiates a management 
plan (see case study below). As an impact is expected after 28 days at that light level, a 
management action is required between 14 days and 28 days. The integration time should 
also be considered prior to the initiation of the disturbance, therefore, if the integrated light 
history (14 days) is below the threshold, then the management plan needs to be put in place 
even prior to commencing the operation.   
 
The time to impact and the integration times are shorter for the sensitive Halophila species. 
In H. decipiens, a small, fast-growing colonising (ephemeral) species, abundance is 
expected to decline after just 14 days below the threshold. Physiological changes, including 
a draw-down on carbohydrate storage reserves can occur within days (Longstaff, et al., 
1999), reducing their resilience. Therefore, an integration time of just 1 day is recommended 
for H. decipiens, and 7 days for H. ovalis and H. spinulosa. Although H. tricostata is probably 
not as sensitive to light stress as H. decipiens, as there is little information available on this 
species, the more conservative 1-day integration time and 14-day time to impact has been 
applied.  
 
Two light thresholds have been recommended for H. ovalis in recognition that it occupies 
diverse habitats (with a broad range in light levels) and is highly sensitive to disturbance. The 
abundance of H. ovalis can decline within 12 days at very low light levels; therefore a short-
term light threshold is required (2 mol m-2 d-1 over 14 days). However, it frequently occurs in 
habitats with much higher light levels when 2 mol m-2 d-1 is unlikely to be breached, but it can 
none-the-less remain vulnerable to low light hence an additional management threshold of 6 
mol m-2 d-1 over 28 days is proposed, and both thresholds should be complied with to avoid 
loss.  
 
The confidence score is a critical component of the recommended management table as it 
highlights the degree of certainty that the light threshold will protect seagrass from an acute 
disturbance (Table 7). Although there is relatively high level of confidence in recommended 
management thresholds for Z. muelleri, a comprehensive assessment of thresholds has 
been undertaken for just one population (Gladstone Harbour). Therefore, there is insufficient 
information from other populations to know whether there are population-specific (i.e. 
genetic), or local environmental effects on light thresholds. Where the confidence is very low 
(4 – 5), the most conservative (higher light, shorter duration) recommendations have been 
made from within the group of species (colonising, opportunistic, or persistent). This can be 
adjusted through investigations that refine light thresholds and it is expected that such 
investigations will make thresholds less conservative.  
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Table 7: Confidence criteria table. 

Score Description of confidence level 

1 

For multiple populations/locations: 
A strong understanding of light deprivation effects on the species with 
laboratory experiments, in situ shading studies and multiple peer-reviewed 
publications documenting the effects of light stress on the species 
including studies assessing the interactive effect of temperature stress and 
nutrients on plant condition. Long term light and seagrass trends also 
monitored in high risk meadows and used to validate experimental results. 
While knowledge gaps may still exist, good confidence in setting species-
specific light thresholds. 

2 For limited locations, but the same as above 

3 Somewhat confident but also lacking information in some of the categories 
above 

4 Low confidence but some studies available or light history within seagrass 
meadows available for analysis 

5 Almost no data available, based on expert consensus only 

 
 
4.2 Case study: developing and applying acute light thresholds in 

Gladstone 

Shading studies were conducted from 2010 to 2013 to simulate the effects of a dredge-
related reduction in light from increased turbidity over an intertidal seagrass meadow and to 
establish an initial range of light required for local seagrass survival. Studies were carried out 
twice during the growing season (July to January) and twice in the senescent season 
(February to June) to assess seasonal differences in seagrass response. Results of these 
studies established significant differences in light requirements between seasons and that Z. 
muelleri required between 4 – 5 mol m-2 d-1 during the growing season to survive with 
significant declines between four to eight weeks if light levels were not maintained above this 
point (Chartrand et al., Subm). During the senescent season, seagrasses declined naturally 
without any further impact from experimental reductions in light. 
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Figure 5: Dual water quality management flow chart from Gladstone Western Basin Dredging Program (Dredge 
Technical Reference Committee, GPC flyer) demonstrating use of turbidity and light management strategies to 

ensure seagrass condition was maintained during dredging operations. 

 
Findings were resolved into an applied threshold of 6 mol m-2 d-1 over a rolling two week 
average, under which management actions and alerts were proposed to ensure appropriate 
steps are taken to mitigate seagrass declines. This light management threshold formed the 
basis of a reactive management strategy successfully implemented to ensure positive 
ecological outcomes for local seagrasses. 
 
Importantly the management plan incorporated a multi-staged approach where alerts and 
actions could be implemented within a timeframe that allowed action to occur before actual 
seagrass declines were likely. The experimental field studies revealed that the earliest 
declines were recorded from light deprivation at 28 days. The management action plan 
(Figure 5) had initial management measures at Level 1 (14 days below threshold) to 
investigate data and possible causes, escalating at Level 2 after 16 days to bring together 
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the technical management group, and again at 18 days and 20 days with final mitigation 
action (stop or modify dredge activity to be implemented at 21 days below the threshold, 7 
days before the first declines were recorded during the experimental studies. 

 
4.3 Management thresholds for long-term maintenance of seagrass 

Maintaining seagrass condition over the long-term may require greater light than set out 
under the acute disturbance thresholds in order to ensure capacity for plant resilience and 
longstanding preservation (Unsworth, et al., 2015). Long-term light requirements can be used 
for setting water quality guidelines (GBRMPA, 2009), to identify management priorities (e.g. 
Waterhouse, et al., 2012) and to identify current and potential changes in seagrass extent 
(Brodie, et al., Subm. ; Steward, et al., 2005). A recommended long-term light management 
threshold is ~10 – 13 mol m-2 d-1 (34 – 44% SI) for species other than deepwater species. 
This threshold should ensure that meadows are not limited by light (Figure 6); however, 
these recommended thresholds are based on relatively limited evidence. The upper light 
threshold (10.4 mol m-2 d-1) for four species over 98 days (Collier, et al., In Press) and 102 
days (Collier, et al., 2012b) was detected using experimental approaches. However, the 
annual minimum light requirement for Z. muelleri meadows was 10 mol m-2 d-1 at the depth 
limit (where it survives, but it is light limited), indicating that this is the minimum amount of 
light required for long-term maintenance (MLR). Therefore, the error estimates in Collier, et 
al. (In Press) were used to estimate an upper conservative management threshold from the 
10.4 mol m-2 d-1 (13 mol m-2 d-1). This should ensure that the meadow is maintained in a 
productive, resilient state, and is not light limited.  
 
The long-term light requirement for deepwater Halophila species needs to be based around 
their growing season. The long-term thresholds are also likely similar to the acute thresholds, 
however further work is needed to better refine these values. It is also important to recognise 
that not all deepwater Halophila species use the same strategy to ensure meadow longevity. 
Some, such as H. decipiens, rely heavily on local seed banks to regenerate entirely from 
seed each year while others have little to no seed bank and rely on below-ground energy 
stores similar to their shallow water counterparts (Chartrand pers obs).  
 
 

 
Figure 6: Long-term light thresholds can be described as light levels required to ensure meadows are not limited, 

by their minimum light required, or by the light level required to maintain a pre-determined desired state.  

 

Desired state?

Minimum light 
requirement

No light limitation
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A light threshold which defines the light above which it does not limit seagrass growth is a 
useful management tool to enable management prioritisation based on its light limitation 
status. For example in the MMP, the long-term (2008 – 2015) average daily light for 6 out of 
22 sites (Figure 7) fall below 10 mol m-2 d-1, and 12 sites fall below 13 mol m-2 d-1, indicating 
that growth is light limited in these inshore meadows. If a meadow is not light limited, but its’ 
abundance is declining, then it may be necessary to look for other potential drivers of 
seagrass loss.  
 
Many studies use minimum light requirements (MLR) and Kd established from seagrass 
depth limits (SDL), to set water quality targets (Dennison, et al., 1993; Steward, et al., 2005). 
This is a useful way to set a target for maximum seagrass extent, and it is assumed that 
meadows shallower than the SDL are protected, and even more productive and abundant 
(Figure 6). However, the depth limit of meadows can be difficult to define in the GBRWHA 
because the meadow boundary can be poorly defined, and even mobile (Collier pers obs). 
Furthermore, many meadows may have their maximum extent defined, not by light, but by a 
reef crest or a channel with fast flowing tidal currents that prevents meadow establishement. 
Thus the SDL will not be realised even light is managed for a theoretical MLR and this 
approach does not provide a realistic strategy to ensure seagrasses are receiving sufficient 
light.  
 
At many locations, the “no light limitation” threshold proposed above (10 – 13 mol m-2 d-1) is 
unlikely to be achieved even with water quality improvement, owing to natural site conditions. 
Thus, there is a need to refine long-term light thresholds on the basis of the “desired state” 
for the seagrass meadow i.e. desired seagrass abundance, a goal that has been highlighted 
as a research priority (Great Barrier Reef Marine Park Authority, 2014; Great Barrier Reef 
Marine Park Authority and Queensland Government, 2015). Desired state should reflect 
management goals, and be defined using attributes of healthy, resilient, functioning systems 
(Foley, et al., 2010; Kilminster, et al., 2015; Unsworth, et al., 2015). This could be quantified 
in highly variable habitat such as the seagrass meadows of the GBRWHA using knowledge 
of site history (Carter, et al., 2015) or reference meadows (McKenzie, et al., 2016) together 
with local light conditions. Relevant light thresholds could then be applied to achieve the 
characterised desired state and ensure a realistic management goal.  
 
Future development of long-term light thresholds based on the desired state for meadow 
condition may need to distinguish among water bodies. Most of the existing long-term 
seagrass abundance and light monitoring data are from open coastal waters, one of the 
cross-shelf boundaries used to delineate water quality targets (Figure 7) (GBRMPA, 2009). 
Daily light reaching intertidal meadows in these coastal waters can vary from 0 to 45.8 mol m-

2 d-1 (Table 8) and have an annual mean ranging from 5.3 to 22.4 mol m-2 d-1.  As you 
increase in depth, the range in light declines (Table 8). In midshelf waters, the peaks in light 
and mean annual values are higher due to less influence from terrestrial discharge and 
coastal development. These large-scale water quality patterns likely drive local seagrass 
acclimation and their capacity to resist or succumb to further reductions in light from ambient 
conditions.   
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Table 8: Long-term mean daily light (mol m-2 d-1) in seagrass meadows of the GBRWHA separated into water 
bodies (Figure 7). Site-specific mean annual light is provided as a range with the daily light range in brackets. 

Superscript numbers indicate the number of sites contributing to the data. From Chartrand unpubl and McKenzie 
et al 2016.  

Habitat Intertidal 
Shallow  
(<5m) 

Deepwater  
(>10 – 15m) 

Enclosed and open coastal water	
5.3 – 22.4 

(0 – 45.8)22 
5.9 – 7.0 

(0 – 18.9)2 
2.0 

(0 – 6.6)1 

Mid-shelf water 
15.8 – 17.7 
(0 – 46.2)2 

6.5 – 11.1 
(0 – 22.0)2 

2.6 
(0 – 8.2)2 
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Figure 7: Light monitoring sites within seagrass meadows of the GBRWHA, water bodies, and seagrass 
distribution (composite). 
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4.4 Considerations and caveats 

The recommended light thresholds were derived from the best available scientific knowledge 
and expert opinion but are based on relatively limited data with no species achieving the 
highest confidence score. The following outlines some considerations and caveats when 
applying the thresholds:  
 

• a potential disturbance should be managed for the most sensitive species present; 

• locally-specific guidelines are highly recommended as these capture inherent site 
conditions (including tidal exposure) that could affect seagrass light thresholds; 

• thresholds are based on total photosynthetically active radiation (400 – 700nm), and 
do not account for spectral quality, which could affect light thresholds; 

• there may be a need for seasonally varying light thresholds; 

• an assessment of local seagrass condition leading up to an acute disturbance will 
help identify whether prevailing environmental conditions have altered seagrass 
health before a light threshold management plan is in place; 

• thresholds are average values, while light levels are naturally variable. Peaks in light 
well above guidelines are likely to be important for some biological processes such as 
reproduction and meadow expansion; 

• based on morphological response (shoot, biomass loss); resilience may be affected 
earlier/at higher light;  

• effects of interactive factors on thresholds are largely unquantified (in situ 
experiments capture naturally changing site conditions);  

• thresholds for >3 months are not tested over annual time frames. In particular, these 
thresholds have not been tested for maintenance of resilience (e.g. capacity to 
sexually reproduce and expand in biomass and area); and  

• measurement of light as an approval condition or for compliance needs to be 
performed at the seagrass canopy (i.e. benthic light) of the meadow to be protected. 
Monitoring light at a shallower or deeper depth will not be an accurate application of 
the management threshold. 

 
4.5 Knowledge gaps 

Through interrogation of available data in this review, a number of important knowledge gaps 
have emerged. Further investment in the following areas will improve certainty around the 
recommended light management thresholds and guidelines:  

• definitions of desired state to underpin the development of long-term light guidelines 
to meet them; 

• species with no information on acute or long-term light thresholds; 

• location and population-specific thresholds particularly for the most at risk species; 
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• cumulative effects of other environmental conditions on light thresholds (e.g. 
temperature, herbicides, sedimentary conditions); and 

• investigations into the effect of spectral quality on light thresholds, and an exploration 
of other light indicators (e.g. Hsat). 
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5. RECOMMENDATION AND CONCLUSIONS 
All available studies on seagrass light requirements were tabulated. This highlighted that 
there are two critical time-scales for consideration of light thresholds: acute and long-term. 
These findings were used to recommend acute management thresholds for 12 species 
occurring in the GBRWHA and which ranged from 2 to 6 mol m-2 d-1 depending on species. 
The thresholds are presented together with an integration time (1 – 14 days), time to impact 
(7 – 50 days) and confidence score (1 – 5). Deepwater species are the most sensitive to light 
reduction and therefore they have the lowest light thresholds and shortest integration time 
and time to impact. Persistent species are the most resistant to light deprivation, but there is 
very limited data on their light thresholds. There is the greatest amount of data available for 
Z. muelleri, and this was given a confidence rating of 2 (where 1 is the highest). Despite the 
low confidence for many species, these acute management thresholds are ready for 
application in compliance guidelines, as the conservative approach taken here should 
provide protection to seagrass meadows at risk from acute light stress.  
 
Water quality guidelines should be based on long-term light thresholds, but these are not as 
clearly defined owing to a paucity of data. As an estimate, 10 – 13 mol m-2 d-1 is likely to 
prevent light limitation for strap-bladed species (not deepwater species, which require less 
light). Defining site-specific desired state and then setting light targets to achieve it will 
advance the establishment of long-term light thresholds.    
 
The following recommendations can be made on the basis of this synthesis: 

• adopt recommended acute light management thresholds; 

• establish a clear definition of seagrass desired state within the GBRWHA in order to 
set long-term light guidelines for managing catchment-scale water quality threats to 
seagrass health; 

• develop locally-specific acute thresholds for application in local management; and 

• explore the effects of cumulative impacts and spectral properties  (temperature, 
nutrients, sedimentary conditions), on acute and long-term light thresholds. 
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Light thresholds for managing seagrass meadows 
at risk from acute water quality impacts

Catherine Collier, Katie Chartrand, Carol Honchin, Adam Fletcher and Michael Rasheed

Seagrass meadows are a critical part of the Great Barrier Reef 
World Heritage Area’s outstanding universal value, but they are at risk 

from declining water quality due to coastal development and terrestrial discharge. 
One of the key controlling factors of seagrass growth is the amount of light they receive and in this 

document we detail appropriate light thresholds for the management of seagrass meadows in the GBR. 
These recommendations come from a synthesis of recent research funded by the National Environmental 

Research Programme, Tropical Water Quality Hub (NESP TWQ) project (Project 3.3).



Background
Water quality affects light reaching seagrass meadows, and light in turn controls 
the productivity, abundance and distribution of seagrass meadows. If light is 
reduced, then seagrass abundance will decline with subsequent impacts to the 
ecological function of the seagrass meadow. Therefore, guidelines that are based 
on light are recommended as a complimentary management trigger for seagrass 
meadows at risk from declining water quality. Recen. research into seagrass light 
thresholds and mature light monitoring programs (>8 years) have provided light 
thresholds for this synthesis.

Findings
Recommended light management thresholds for acute impacts are based on integrated daily light 
and range from 2 to 6 mol m-2 d-1 depending on the species (Table 1). The thresholds are presented in 
conjunction with:

•	 Time to impact (7 – 50 days), which is based on the time until seagrass abundance is affected by 
light below the threshold;

•	 Integration time (1 – 14 days), which describes both the averaging time for monitoring daily light and 
a means to track progress towards meeting the light threshold before the time to impact is reached;

•	 Confidence score, which is defined by the amount of information available for each species 
(Table 2); and

•	 Species classification:

»» Colonising — fast-growing and sensitive to disturbances including light reduction

»» Opportunistic — able to adapt to local environmental conditions, with intermediate 
sensitivity to stress

»» Persistent — form enduring meadows 
that resist stress but are slow to recover.

Approach
Available information on seagrass light requirements and thresholds were tabulated 
for the species occurring in the GBRWHA. These are based on thresholds that cause 
reductions in seagrass abundance (biomass, shoot density, percent cover). Full 
method details can be found in the synthesis report Collier et al. (2016). This synthesis 
highlighted two critical time-scales – acute and long-term thresholds – which also 
correspond to guidelines for acute compliance standards, and water quality guidelines 
for catchment management, respectively. The information presented here is for the 
recommended management thresholds for acute light stress (i.e. impacts of up to 3 
months duration) and their application in compliance monitoring.

Colonising Opportunistic Persistent



Score Description of confidence level

1 For multiple populations/locations:
A strong understanding of light deprivation effects on the species with laboratory experiments, in situ shading studies 
and multiple peer-reviewed publications documenting the effects of light stress on the species including studies 
assessing the interactive effect of temperature stress and nutrients on plant condition. Long term light and seagrass 
trends also monitored in high risk meadows and used to validate experimental results. While knowledge gaps may 
still exist, good confidence in setting species-specific light thresholds.

2 For limited locations, but the same as above

3 Somewhat confident but also lacking information in some of the categories above

4 Low confidence but some studies available or light history within seagrass meadows available for analysis

5 Almost no data available, based on expert consensus only

Species Classification Suggested 
management 

threshold 
(mol m-2 d-1)

Integration time 
(days)*

Time to impact
(days)**

Confidence 
score+

Halophila decipiens Colonising 2 1 14 3

Halophila ovalis^ Colonising 2 7 14 3

. . . .  - Colonising 6 7 28 3

Halophila tricostata Colonising 2.5 1 14 5

Halophila spinulosa Colonising 2.5 7 28 4

Zostera muelleri Colonising/opportunistic 6 14 28 2

Halodule uninervis Colonising/opportunistic 5 14 40 3

Cymodocea rotundata Opportunistic 6 14 28 5

Cymodocea serrulata Opportunistic 5 14 50 4

Syringodium isoetifolium Opportunistic 6 14 28 5

Thalassodendron ciliatum Persistent 5 14 50 5

Thalassia hemprichii Persistent 5 14 50 4

Enhalus acoroides Persistent 5 14 50 5

Table 1: Suggested management light thresholds for GBR seagrasses

*	 Averaging time used to describe light history and as first signal to trigger management plan
**	 Time to impact expected and a management plan should be implemented before this time
^	 Two-step threshold applies due to species plasticity, see full synthesis document for details
+	 Confidence score is detailed in the following table

Table 2: Confidence criteria table
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Considerations and Caveats
The recommended light thresholds were derived from the best available scientific knowledge, but 
are based on relatively limited data. Some considerations and caveats to consider when applying the 
thresholds include:

•	 Managing for the most sensitive species at a given location;

•	 Ideally develop locally-specific guidelines as they best encapsulate local growing conditions;

•	 Incorporate seasonally varying light thresholds where appropriate

•	 For species with a low confidence score the thresholds are likely to be highly conservative and further 
study is recommended to improve applicability of the thresholds.

Other important considerations are detailed in Collier et al. (2016) and should be reviewed before acute 
impact guidelines described herein are implemented for management purposes.

A successful light-based management approach for protecting seagrass (Z. muelleri) from an acute 
impact has recently been applied in Gladstone Harbour during a large-scale dredging campaign 
(Gladstone Ports Corporation 2012). Combined with the species-specific threshold values in this 
document it provides a template for the application of light thresholds to manage other coastal 
developments that result in acute impacts to water quality and light.
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