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4.1 The concept of resilience in social-ecological systems
The vulnerability assessments in this volume frequently refer to the resilience of various ecosystem 

elements in the face of climate change. This chapter provides an introduction to the concept of 

ecological resilience, and its application as part of a management response to climate change threats. 

As defined in the glossary, resilience refers to the capacity of a system to absorb shocks, resist dramatic 

changes in condition, and maintain or recover key functions and processes, without undergoing “phase 

shifts” to a qualitatively different state (Figure 4.1)32, 72. For example, people who are physically and 

mentally fit and strong will have good prospect of recovery from disease, injury or trauma: they  

are resilient. 

In Figure 4.1, a ball placed at position 1 is dynamically stable: not only will it remain in position, but 

if pushed in any direction, it will return to its original position; thus the ball in this state is resilient, 

in that it can absorb shocks and return to a similar condition or state. In contrast, a ball placed at 

position 2 may be initially stable (it will remain in position if undisturbed) but not dynamically stable: 

if disturbed, it will move away. Thus the ball at position 2 is not resilient, and disturbances will result 

in a shift in state. If the ball at position 1 is disturbed to anywhere within the red circle, the ball will 

return to position 1; however, if disturbed further, the ball may not return, but may move to a new, 

alternate stable state (eg position 3). This system is resilient to disturbances that push it within the 

red boundary. However, if external factors decreased the depth of position 1, or lowered the saddle at 

point 2, then the system’s resilience would be reduced. By analogy to coral reef ecosystems, position 

1 might be a coral-dominated reef, and position 3 algal dominated. A disturbance such as killing 

coral that is overgrown by algae would move the reef toward an algal-dominated state; if the reef is 

resilient, this change would be temporary and natural processes would allow coral to re-establish and 

recover. If not, the algal dominance might be sufficient to preclude coral regrowth or recruitment, 

and the reef would change trajectory, moving toward algal dominance.

Figure 4.1 Resilience, dynamic stability and alternate stable states (redrawn from Walker et al. 200473)
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Ecological resilience refers to the capacity of an ecosystem, habitat, population or taxon to withstand, 

recover from or adapt to impacts and stressors, such as climate change, and retain the same structure, 

processes and functions32. For example, coral reefs are naturally very dynamic, undergoing constant 

change and disturbances, but, under natural conditions, they have considerable capacity to recover or 

maintain key processes and functions in the face of such disturbances or pressures. Tropical storms may 

cause dramatic damage to coral populations, and hence to the physical habitat structure, with dead 

coral being overgrown by various forms of algae. This will result in a temporarily changed state, and 

changes in ecological functions. On a resilient reef, over a period of five to 20 years, the altered state is 

unstable: coral fragments will regrow, and new corals will settle, grow and gradually replace the algae, 

restoring the reef to coral dominance, and restoring ecological structure and processes. In contrast, 

however, if human impacts have undermined that resilience, algal growth may be exacerbated, coral 

regrowth and colonisation may be suppressed, and the altered state and processes may become stable, 

causing a long-term “phase shift”, or change, to algal dominance33, 50, 37. 

For ecosystems to persist in the long term, successful reorganisation (recovery) after disturbance 

is fundamental. However, coral reefs are facing pressures at local, regional and global scales that 

challenge their capacity to reorganise following disturbance and thus challenge their existence31, 

34,78. Coral reefs exposed to gradual change are often assumed to respond gradually and smoothly. 

However, like most other ecosystems, they are dynamic, complex and adaptive57. Put simply, this 

means that they are characterised by environmental thresholds that, if crossed, may lead to large-scale 

and relatively abrupt shifts in state, including changes in ecosystem processes and structure (eg coral-

dominated reefs shifting to algal dominance) and in their capacity for self-organisation44, 24. Ecological 

resilience also embraces adaptability, in the sense that an ecosystem may maintain characteristic 

structures and processes by developing new and innovative organisation or attributes. For example, 

in the Caribbean, sea urchin populations increased in response to overfishing of herbivorous 

fishes; in effect, the ecosystem reorganised to maintain the process of herbivory30,33. Importantly, 

once a threshold is crossed and a shift in state or key processes occurs, it may be difficult, or even 

impossible, to reverse the shift, due to changes in feedback mechanisms that stabilise the new state. 

Such reinforcing mechanisms may, for example, involve algae that prevent corals from establishing 

by occupying substratum, trapping sediments, releasing allelopathic chemicals, and overgrowing 

juvenile and low-relief adult coral colonies51,7,67. Reversing such a shift may require a different path, 

and restoring conditions to previous levels may not be sufficient (an effect known as “hysteresis”)35. 

For example, the numbers and species of herbivorous fishes required to prevent algal overgrowth of 

corals may not be enough to remove an algal bloom once it has occurred. Reversal of such shifts may 

not only be difficult, but is likely to be significantly more expensive than prevention.

The concept of resilience provides a valuable integrating theme or perspective for both the science 

and management of natural environments, in particular because it addresses two of the most difficult 

challenges in understanding and managing human impacts on natural ecosystems: first, that different 

natural or anthropogenic (human-derived) stressors can interact, and synergise to cause more 

damage than either stressor alone33, 52; and second, that stressors and their impacts and interactions 

can be difficult or even impossible to predict. Individual human-derived stressors rarely occur in 

isolation: for example, for example, terrestrial runoff to reef waters, usually contains increased levels 

of several pollutants, such as sediments, nutrients and pesticides. Several studies have shown much 

higher impacts in response to combinations of pollutants than to individual pollutants22. If, as human 
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populations grow, increased runoff co-occurs with overfishing, algal growth, enhanced by nutrients, 

may pass a threshold level, beyond which herbivorous fishes may fail to control algal abundance if 

their numbers have been reduced50. The result may be a sudden overgrowth of algae that is well 

beyond that accounted for by the nutrient runoff. 

Interactions between chronic and acute disturbances are particularly significant. For example, on coral 

reefs, considerable evidence has emerged that while some chronic human-derived stressors, such 

as over-fishing or eutrophication (nutrient and sediment pollution), may have relatively small direct 

effects on established corals, they may severely limit the capacity of coral populations to recover after 

acute disturbances such as storm damage or mass bleaching due to sea warming. In this scenario, the 

chronic stressor may be of little immediate and direct threat to undisturbed reefs, but may reduce the 

resilience of the habitat, so that failure to recover from frequent, repeated disturbances may result in 

a gradual, piecemeal degradation or “ratchetting down” of reef health (Figure 4.2)33, 52.

Figure 4.2 Modelling the effects of chronic stressors, such as eutrophication, and repeated 
disturbance, such as mass bleaching, showing the potential importance of interactions (redrawn 
from McCook et al 200152). Individual graphs represent the changes in coral (blue lines) and algae 
(brown lines) through time, for computer simulations of reef dynamics. 
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Figure 4.2 simulates the effects of increasingly frequent disturbances52. The graphs on the left show 

that the “virtual reef” is relatively resilient and coral populations recover after each disturbance, so 

that even with relatively frequent disturbances overall reef condition is maintained in the long term. 

The three graphs along the top row indicate potential effects of increasing stresses, such as overfishing 

or eutrophication. Reef condition declines with increased stress, but coral populations can persist at 

moderate levels: reef condition is moderate, but resilience is reduced by the stresses. However, when 

chronic stress is combined with frequent disturbance (bottom right graph), the reduced resilience 

means the reef cannot fully recover before the next disturbance, damage accumulates and there is 

a serious long-term decline in condition. Thus, this model reef community can persist with either 

frequent disturbances or chronic stresses, but becomes degraded if subjected to both impacts. This 

model illustrates two important points. Firstly, the chronic stresses do not appear to cause the coral 

declines in the bottom right panel; simple monitoring of this system would suggest the declines 

are caused by the disturbances. Only by understanding the processes that engender recovery and 

resilience do we recognise the critical role of the chronic stresses. Secondly, management strategies 

that seek to both reduce the frequency of disturbance (eg by mitigating climate change) and enhance 

the resilience (eg by reducing overfishing or runoff of pollutants) may be much more effective than 

either action alone.

The risk with this situation is that management actions that address stressors in isolation may fail if 

they do not address the potential interactions. In addition, they may fail to engender public support; 

for example, addressing pollutant runoff might be seen as wasted effort because the perception is 

that climate change will damage the reef anyway. By understanding these interactions, scientists, 

managers and the public will be able to see the value of specific management actions not only in 

addressing the specific risk, such as pollutant impacts, but also in maintaining the overall resilience of 

the ecosystem to resist or recover from other impacts. 

The second benefit of managing for overall resilience, as well as for specific threats or impacts, is that 

it provides the best insurance against future unforeseen or unpredictable threats42,26. Several of the 

most significant threats to coral reefs in recent decades have emerged unexpectedly. The decline of 

Caribbean reefs was significantly increased by the completely unforeseen, wide-scale disease-induced 

mortality of herbivorous Diadema sea urchins in the 1980s. These herbivorous sea urchins had 

previously prevented algal exclusion of corals, and the impact of this die-off was much more severe 

because of the wide-spread depletion of herbivorous fish33,8. Similarly, the now wide recognition of the 

impact of climate change on coral reefs through increased mass bleaching was unforeseen 10 years 

ago31. It is likely that other currently unrecognised threats will emerge for reefs and other habitats 

within the Great Barrier Reef (GBR) until science identifies new threats, the best management strategy 

is to aim for a system with the resilience to recover from a wide range of possible challenges.

The concept of resilience is not limited to ecosystems in isolation from humans, but also applies to 

social and economic systems and it has been recognised for some time that social, economic and 

ecological resilience are strongly intertwined. Management actions aimed at protecting ecological 

resilience that also take account of the social and economic wellbeing of the community will 

generally be more sustainable and effective in the long-term. For example, marine protected areas 

that generate increased tourism revenue for local communities from the improved condition of 

ecological resources, or increase sustainability of fisheries, generate support in those communities, 
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in turn generating improved compliance and enforcement77,2. Management that ignores or overruns 

the social or economic context will often be less effective, or fail, owing to a lack of local support 

or political intervention. Importantly, social, economic and ecological resilience are not inconsistent 

goals, and can be effectively integrated27.

Resilience also provides a basis for integration of management strategies and responses to different 

issues, and for adaptive management approaches. Thus, management action to reduce terrestrial 

runoff may be markedly more or less effective, depending on the management of pressures on 

herbivorous fish populations48,41. It may be most beneficial to manage fishing pressure in areas with 

the highest runoff. Adaptive management requires that the effectiveness of current management 

practices be periodically reviewed as conditions and circumstances change, and as new threats 

emerge. The concept of resilience suggests that any review should include not only the apparent state 

of the ecosystem (or social-ecological system), but also the key processes and functions which confer 

resilience, and that management actions should respond or adapt to changes in those processes and 

functions37.

4.2 Ecological resilience in the context of climate change
Human-induced climate change is a major threat to many ecosystems, including the GBR31,34 (see 

chapters 5–22). In simple terms, two management approaches can be taken to minimise these 

impacts: reduce the extent of the changes; and maximise the capacity of the system to resist, adapt 

to, or recover from, those impacts (Figure 4.3). Overall, addressing the cause of the problem (for 

example, by abatement of greenhouse gas emissions) is critically important and likely to be the 

most effective approach. It is also likely to be the most cost-effective strategy overall, because it will 

ameliorate impacts on a vast range of systems, both human and natural. However, such measures are 

beyond the scope of marine management agencies, and will not be sufficient alone. Because there 

will be long lag times in the reversal of current climate trends (decades to centuries), ongoing change 

is inevitable for the next several decades (Lough chapter 2).

Figure 4.3 Management responses to increasing pressure on coral reefs 
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Figure 4.3 shows that the effect of pressures on reefs (solid red line) is predicted to increase 

dramatically over the next century, due to climate change and other human impacts. As a result, 

ecosystem condition is likely to decline, along with the capacity to recover from those impacts. If 

the loss of resilience is sufficient, reefs may pass a threshold beyond which they do not recover, but 

remain in an alternate, degraded state (solid green line). There are two complementary strategies 

available to managers. First, and paramount, is to reduce climate change and other human pressures 

on reefs (dashed red line); in the case of climate change, this requires action at global scales, and is 

beyond the scope of marine management agencies. Second is to manage other sources of stresses or 

pressures on the reefs, so that the decline in resilience is reduced and the ecosystem has enhanced 

capacity to maintain itself or to recover, rather than pass the threshold. Action on this strategy 

– managing for resilience – is challenging but possible for marine management agencies.

In this context, it is critical to maximise the capacity of the GBR ecosystem, and the communities and 

industries that depend on it, to adapt to climate change. However, as numerous chapters in the current 

volume illustrate, for many taxa and ecosystems there is a lack of detailed scientific understanding of 

the impacts, and an even greater ignorance of how to address those impacts directly. This makes it very 

difficult to develop specific management strategies for climate change adaptation. It thus becomes 

increasingly critical to maximise the resilience or capacity of the ecosystem to cope with changes 

generally. Management for resilience is therefore not only a general strategy for protection, but an 

important part of responding to the impending threat of climate change34.

It is important to emphasise that abatement and adaptation are necessarily complementary strategies. 

Managing for resilience is unlikely to provide sufficient protection for the biodiversity of the GBR; 

rather, it aims to slow and reduce the impacts sufficiently to allow natural adaptation and abatement 

of climate change to occur. Good management of marine ecosystems must not be seen as reducing 

the need for strong and urgent attention on a global scale to a problem of global magnitude.

4.3 Aspects of the ecological resilience of the Great Barrier Reef 
Of the numerous and varied habitats found in the GBR, the factors contributing to the resilience of 

coral reefs are best understood57,46,34,5. The following section provides a brief overview of some of these 

factors, although the discussion is intended to be illustrative, rather than exhaustive. Unfortunately, 

there is relatively little or no specific information available on the factors contributing to resilience of 

most other GBR habitats. This section therefore focuses primarily on coral reefs, as an example of the 

approach, and then only very briefly considers how the approach might apply to other habitats, and 

to species of particular conservation concern (such as dugong and other megafauna). 

4.3.1 Factors contributing to ecological resilience of coral reefs

4.3.1.1 Population condition and dynamics of reef-building corals

The population condition and dynamics of corals, as the major contributors to reef construction, 

are fundamental to the capacity of reefs to absorb and recover from disturbances. Abundance of 

corals is an important factor, since disturbance to a reef with abundant coral will generally still leave 

some coral alive that can be a basis for population recovery. However, other key aspects include 



82 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part I: Introduction

the diversity, fecundity, settlement and post-settlement survival rates and general metabolic and 

immunological condition of the corals3. It is important to recognise that a reef dominated by large but 

fragile corals may have a lower capacity to recover from a disturbance than a reef with less coral but 

more diversity of forms and higher recruitment rates. Similarly, low abundance of coral may simply 

reflect recent disturbance history, rather than overall low resilience. If coral recruitment and growth 

is high, reef condition may recover relatively quickly47.

Coral population dynamics can have important indirect significance for resilience. For example, a reef 

with abundant and diverse corals is likely to have a complex, topographic structure that provides 

important habitat for other groups of organisms, thereby increasing biodiversity and potentially 

strengthening critical functions such as herbivory71,50.

4.3.1.2 Benthic algal assemblages and herbivory

Competition between corals and benthic algae is fundamental to the abundance of corals on reefs. 

Algae may directly overgrow coral tissue, reduce the amount of light available for photosynthesis, 

abrade tissue, or produce chemicals that damage or kill coral tissue51. All of these effects will have 

significant metabolic costs to the coral, even if it is able to resist or defend itself.

Recent work has highlighted a particular, chemically mediated, mechanism of algal competition 

related to the microbial community on reefs. Plants release organic carbon into the water column 

and this has been found to increase microbial activity, which can result in coral tissue mortality45,43,67. 

Additionally, increasingly complex and long-living algal assemblages may accumulate larger microbial 

populations. Again, even if the coral tissue is not killed, these microbial stresses will have significant 

metabolic costs, reducing the capacity of corals to respond to other stresses.

Perhaps more significantly, algae may pre-empt space, inhibiting or preventing coral recruitment. 

Coral mortality is almost universally followed by colonisation by benthic algae of various forms (Figure 

4.4)15,17. After wide-scale coral mortality, such as results from climate change-induced mass coral 

bleaching31,78, the majority of substrate will be covered in various forms of algae, and recovery of 

coral populations will generally require recruitment on substrates dominated by algae (rather than on 

live coral, for example).7 The nature of this algal assemblage will be fundamentally important to the 

success of subsequent coral settlement and growth. Substrate dominated by crustose coralline algae, 

with a sparse covering of short (less than 1 mm), fine filamentous turf algae, is likely to be highly 

favourable for coral settlement and growth. In contrast, a dense algal mat or thick growth of upright 

foliose or fleshy algae may severely inhibit coral settlement and survival, especially as such mats will 

often trap large amounts of sediment7,37.

Under expected climate change scenarios, mass bleaching events are expected to occur with increasing 

frequency and severity31. Under these scenarios, algal overgrowth of dead corals and consequent 

algal dominance will become the norm, and coral populations are unlikely to recover sufficiently in 

between bleaching events. In such circumstances, the effects of different algal assemblages on coral 

recruitment, and on the recovery of surviving coral fragments, will become critical to the resilience of 

the reef, as will the effects of climate change on algal assemblages (Diaz-Pulido et al. chapter 7). It is 

likely that algal impacts on coral populations will become a real “bottleneck” for reef recovery.
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Given the importance of benthic algae to coral populations, controls on the abundance and type of algae 

are critically important to reef condition. The primary controls on algal abundance and type on coral 

reefs are substrate availability and grazing by herbivores, usually fish or invertebrates such as sea urchins. 

The abundance and diversity of herbivores have been shown to be critical to long-term reef condition 

around the world. In the Caribbean, overfishing of herbivorous fishes resulted in a low-diversity herbivore 

community dominated by Diadema sea urchins. The sudden, regional scale die-off of sea urchins due 

to disease resulted in rapid increases in algal abundance, with subsequent declines in coral populations 

and failure to recover from disturbances33,8. Studies on the GBR have shown that herbivores are equally 

critical to algal distributions (Figure 4.5)16,37,40,41,48,49,6. Fortunately, pressure on herbivorous fishes is 

currently minimal, so this important element of reef resilience remains largely intact.

4.3.1.3 Biological diversity

Marine ecosystems with high biological diversity will generally be relatively resilient, largely because 

they will have more diverse responses and capacities available to them, which can provide the basis 

for adaptation to new threats such as climate change47. This diversity may be at a range of levels, 

including genetic diversity within species, diversity of species within guilds (functional groups, such 

as corals or herbivores), trophic diversity, and complexity and diversity of habitats. For example, 

genetic diversity within a coral species, or diversity of the symbiotic zooxanthellae within a coral 

population, may provide greater capacity for the coral population to survive diverse stresses, and 

increase the likelihood of some individuals surviving a particular bleaching event4. Different species 

Figure 4.4 Algal overgrowth of bleached corals in the Keppel Islands, Great Barrier Reef (August 
2006). Severe bleaching of corals in the summer of 2006 resulted in extensive coral mortality and 
overgrowth by the alga Lobophora variegata. Previous work has shown L. variegata to be a highly 
effective competitor with corals40,41. The fate of these reefs will depend on factors such as herbivory, 
which influence the persistence of alga, and it's impact on coral regrowth and recruitment.
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and morphologies of coral have different susceptibilities to temperature-induced bleaching and to 

other threats; a reef dominated by a few coral types may be more vulnerable to widespread damage 

than a more diverse reef46. A reef with a diverse range of herbivores will have greater capacity to 

remove or prevent outbreaks of different types of algae6, and will be less vulnerable to events such as 

the disease outbreak that killed Diadema sea urchins in the Caribbean. Diversity of habitats within an 

ecosystem increases the likelihood of some habitats being less severely impacted by particular stresses 

or disturbances47. For example, shallow reefs are often more vulnerable to storm damage and to coral 

bleaching. Deeper reef areas or areas with more complex topography may provide refuges that can 

be a source population for repopulating damaged areas.

Diversity within guilds has two aspects that underpin resilience: redundancy and response diversity. 

Redundancy74,70,6 describes the capacity of one species to functionally compensate for the loss of 

another within a functional group. Some species that seem unimportant may become critical for 

reorganisation when conditions change, whether slowly (eg increasing seawater temperature, 

accumulation of nutrients) or abruptly (eg crown-of-thorns or disease out-breaks, hurricanes, 

bleaching events). Thus, in the Caribbean herbivore example, the presence of sea urchins suppressed 

algal overgrowth, even when herbivorous fishes were overexploited. The critical importance of 

herbivorous fishes only became apparent when disease wiped out the sea urchins33, 8. However, if 

all species are affected by a disturbance in the same way, even having a large number of species in 

a functional group may not contribute to resilience. Response diversity20 describes the variability of 

responses within functional groups to disturbance10. A wide range of responses enables some species 

to compensate for others, which facilitates regeneration after a disturbance. Although it is not clear 

to what extent aspects of biodiversity contribute to resilience, it is clear that different aspects will be 

important under different circumstances.

Figure 4.5 Effects of herbivory on resilience of a coral reef.37 A. The reef crest at Orpheus Island, 
Great Barrier Reef, was severely damaged by mass bleaching in 1998,37 resulting in overgrowth by 
fine, filamentous turf algae (i). Over the next few years, coral populations recovered by recruitment 
of new corals (ii) and by regrowth of surviving fragments (iii), with little impact from the filamentous 
turfs. B. In contrast, when large fishes were excluded to simulate the effects of overfishing, there was 
a dramatic overgrowth of Sargassum and other large, fleshy seaweeds, which reduced the growth 
and recruitment of corals and inhibited recovery of the community.
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4.3.1.4 Connectivity

The capacity of reefs to recover after disturbances, or reorganise in the face of new stresses, depends 

critically on the supply of larvae or propagules available to reseed populations of key organisms, 

such as fish and corals38,63. Most marine organisms have a planktonic larval phase, in which larvae 

are dispersed by a combination of active behaviour, such as swimming, and passive transport by 

ocean currents. Connectivity refers to the extent of the connections between reefs and source 

populations, which may be other reefs or other habitats, such as coastal mangroves (for many fish), 

inter-reef seafloor, or seagrass beds19,55. Patterns of connectivity depend strongly on ocean currents, 

the length of time that larvae remain viable in the plankton, and the existence of upstream habitats 

with refuge source populations. Even if a reef is well protected and soundly managed, alterations in 

the surrounding seascape may erode resilience if the supply of critical processes and functions, such 

as coral recruitment, is cut off47.

Over short spatial and temporal scales, connectivity provides for the dispersal of both larvae, enabling 

recolonisation of sites, and adult organisms, potentially supporting ecological functions such as 

herbivory. Recent studies indicate that reef populations are overwhelmingly self-seeding69,13, due to 

a combination of hydrographic and biological properties that retain larvae and/or strongly dilute a 

larval pool as it disperses from its source. When disturbances or stresses reduce the capacity for self-

seeding, connectivity plays a critical role.

At larger spatial and longer temporal scales, connectivity provides the means of exchange of genetic 

material, and thus the currency of diversity, in space and time. Over multiple generations, connectivity 

maintains genetic continuity within populations and species, and defines the biogeographic spread of 

species. Resilience operates at many scales, and connectivity provides a mechanism for spreading and 

sharing resilience properties among locations. Thus ‘connected’ locations influence one another to 

varying extents in terms of resilience. Different ecosystem properties may operate across different scales, 

and degradation in multiple parts of a seascape may be masked by overall connectivity and sharing of 

resilience. Fragmentation of a seascape by the erosion of resilience in different locations may make the 

overall ecosystem vulnerable. For example, if the connectivity of a critical process is undermined by a 

disturbance event, the ecosystem may be pushed beyond a previously hidden threshold.57

Connectivity may also reduce resilience, if it facilitates dispersal of undesirable factors, such as 

disturbance, pollutants (eg nutrients) or organisms (eg diseases, algae, exotic species). The success 

of undesirable, invasive species will depend on the resilience of individual reefs within the seascape 

mosaic. Erosion of resilience at local scales may create dispersal refuges for undesirable organisms. 

4.3.1.5 Refugia

Refugia are areas where ecosystems are unaffected by, or protected from, stressors or disturbances 

that reduce resilience. Refugia help to maintain diversity and abundance by serving as sources for 

replenishing the disturbed populations that underpin connectivity, and serve as stepping stones 

for maintaining connectivity across larger scales. Important features of refugia include sufficient 

location and separation distances to ensure connectivity, adequate extent to provide sufficient source 

populations, and inclusion of comprehensive and representative examples of the different habitats 

within a region34,36,54.
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A primary tool in marine protected area management is establishing no-take zones that aim to 

provide refuges from human stressors. They thus maintain the resilience of local sites, and of the 

overall system, through connectivity with each other and with adjacent zones open to human 

uses54,36. While it is clear that a higher proportion of a seascape maintained within refugia will provide 

greater protection on the whole, the nature of the relationship is as yet only approximately estimated. 

However, the irreversibility and threshold behaviour discussed above suggest that insufficient refugia 

will likely have serious long-term consequences5.

4.3.1.6 Water pollution and environmental quality

The quality of the chemical and physical environment is a strong determinant of resilience. A 

poor-quality environment exacts significant costs to organisms in maintaining physiological health 

and integrity and in maintaining ecosystem function. In particular, good water quality is critical to 

the health of corals, and to ecological processes such as the recruitment of corals and coral-algal 

competition, both of which are important for ecosystem resilience68,50,29. In most nearshore tropical 

marine ecosystems, poor water quality is manifested as a long-term chronic increase in anthropogenic 

inputs of nutrients, sediments and other pollutants39. Recent work has particularly emphasised the role 

of excess organic carbon in reducing the resilience of coral populations43,45.

A considerable body of recent research suggests that a major impact of poor water quality is not in direct 

effects on corals or coral-algal competition, but in the inhibition of recovery from other stresses and 

disturbances50,79. For example, after mass bleaching events, excess sediments and nutrients may inhibit 

coral recruitment synergistically with increased algal growth, with the result that coral populations 

re-establish too slowly to recover between disturbances21. Suppressed physiological health may also 

increase susceptibility to thermal stress and coral bleaching, given the metabolic costs of bleaching (the 

loss of the photosynthetic zooxanthellae). Modelling work has shown that a ecosystem able to cope 

with either frequent disturbances or eutrophication may show serious long-term degradation if the two 

occur in combination, amounting to a critical loss of resilience (Figure 4.2)52.

From a management perspective, however, improving environmental quality provides one of the 

most accessible tools for maximising resilience to many other threats, from chronic fishing pressure 

to acute disturbances. In the classic case study of Kaneohe Bay in Hawaii, reductions in pollution 

delivered to the relatively enclosed bay were followed by partial recovery of reefs from a degraded, 

eutrophic state to a healthier condition68. On the GBR, water quality is being addressed proactively 

through the Reef Water Quality Protection Plan (see Section 4.6).

4.3.1.7 Aspects of resilience specific to climate change

As well as the general resilience factors discussed above, there are a number of environmental, 

ecological and physiological factors that relate directly to climate change-specific threats75,59. 

Most work to date has focused on thermal stress due to climate change; other impacts, especially 

acidification, are likely to be important (Fabricius et al. Chapter 17). The factors listed below have been 

shown to reduce thermal stress, coral bleaching or mortality in some cases. However, it is important 

to recognise that these factors are not always sufficient, and that they do not act independently. 

Addressing one in isolation of others, and of other processes that affect coral health and resilience, is 

likely to be ineffective.
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Thermal protection
Some reef areas appear to avoid or be protected from the oceanographic conditions that induce 

coral bleaching. This may be due to reduced water temperature, reduced light levels, and/or 

increased flushing. At large scales, these conditions may be induced by oceanographic and climatic 

features such as upwelling zones, current systems or regional climates that increase cloud cover, 

storms or cyclones66. At local scales, some corals and habitats appear to be protected from the worst 

thermal conditions by local topographic features that provide shading, screening or other micro-

environmental variation3.

Thermal resistance
Some reef areas, zones, patches and individual corals appear to be resistant to thermal stress and 

show less bleaching and/or mortality than other areas or corals under similar conditions. Resistance 

may be related to intrinsic (genetic) or extrinsic (environmental) factors. Genetic factors include the 

identity of the coral species and of the symbiotic zooxanthellae, and individual variation. In particular, 

some clades (genetic groups) of zooxanthellae have been found to be more resistant to bleaching 

than others4. Environmental factors include conditions that allow corals to acclimate to higher 

temperatures or to variability in temperatures53,18.

Bleaching tolerance
Some reef areas, zones, patches or individual corals appear to be more tolerant to bleaching and 

suffer less mortality after bleaching than other areas or corals. Tolerance may also be related to 

intrinsic or extrinsic factors, but appears to be distinct from resistance to thermal stress65.

These factors may be useful to reef managers in identifying and protecting areas of potential resistance 

and resilience of coral reefs to climate change. For example, areas that appear to have survived or 

recovered rapidly from previous bleaching might, in principle, be suitable sites for protection. 

However, to date no two mass bleaching and mortality episodes at a site have followed very similar 

patterns, so caution is needed and a range of resilience factors must be considered simultaneously, 

including the predictability and regularity of their occurrence75.

4.3.1.8 Minimising bleaching impacts at local scales

There can be no doubt that the most effective strategy to reduce bleaching impacts on coral reefs 

is to minimise climate change drivers. However, given that significant change is now unavoidable, 

it is also necessary to take every possible step to minimise the impacts of that change at local scales 

by addressing the various factors outlined above. It is likely that the two strategies, proceeding in 

tandem, may have synergistic benefits for reefs. Thus, in general terms Salm et al.64 recommend 

that managers (a) identify and protect from direct anthropogenic impacts, specific patches of reef 

where local conditions are highly favourable for survival generally, and that also may be at reduced 

risk of temperature-related bleaching and mortality and (b) locate such protected sites in places 

that maximise their potential contribution to the recovery of damaged or vulnerable reefs that are 

connected through larval dispersal.



88 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part I: Introduction

1.  Managing for risk: representation 
and replication—protecting 
multiple examples of a full range 
of reef types helps to ensure 
inclusion of representatives 
of the area’s total reef 
biodiversity. Replication of 
each reef type reduces the 
chance of any one type being 
completely compromised by an 
unmanageable impact such as a 
major bleaching event.

2.  Refugia—Identifying and fully 
protecting coral communities 
that demonstrate bleaching 
resistance and that can thus 
serve as refugia is an effective 
way to facilitate reseeding and 
recovery of other areas that are 
seriously damaged by bleaching. 

3.  Connectivity—Identifying 
patterns of connectivity among 
source and sink reefs, so that 
these can be used to inform 
reef selection in the design of 
marine protected area networks 
and provide stepping stones for 
larval dispersal over longer time 
frames, is an important step in 
building resilience into networks.

4.  Effective management—
Managing reefs for both 
health and resilience and 
monitoring multiple indicators 
of the effectiveness of current 
actions are the bases for 
adaptive management. Effective 
management is fundamental to 
the success of any conservation 
effort and the daily business of 
managers’ work.

Table 4.1 Summary of local management approaches for mitigating climate change impacts on 
coral reefs

1.  Use the ability to predict bleaching events to enhance coral 
reef monitoring programs; try to obtain pre- and post-
bleaching data.

2.  Establish monitoring protocols to answer specific questions 
about the causes and effects of bleaching events.

3.  Use remote sensing tools to increase the level of 
predictability.

4.  Use the ability to predict bleaching events to gain the 
attention of the public and to solicit their assistance in coral 
reef conservation.

5.  Use the severe impacts of coral bleaching as a way to 
leverage other conservation measures such as reducing 
point and non-point sources of pollution.

6.  Use coral bleaching events as a way to increase the public’s 
awareness and peer pressure as to the need to cease 
destructive fishing practices.

7.  Contact coral reef users and encourage them to lessen their 
direct impact on coral reefs during these stressful periods.

8.  Engage divers in providing education and outreach 
messages about coral reefs so they can take direct action to 
lessen their physical impacts on the corals during stressful 
periods.

9.  Communicate the long-term impacts of coral bleaching to 
reef users and solicit help in communicating to decision-
makers the kinds of appropriate actions that need to be 
taken regarding climate change.

10. Identify coral reefs that are resistant to bleaching and 
develop criteria that will aid in the design of marine 
protected areas.

11. Establish fully protected reserves in areas resistant to coral 
bleaching.

12. Enlist the scientific community to assist in communicating 
the long-term trends that can be expected if current trends 
of climate change continue.

13. Integrate the geological and biological sciences in such a 
way as to hindcast our observations into geological times in 
order to forecast the long-term expectations for coral reefs.

A Global Protocol for Assessment and Monitoring of Coral 

Bleaching61, A Reef Manager’s Guide to Coral Bleaching53 and 

other approaches9,60

R2—Reef Resilience Toolkit56
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More specifically with respect to mitigating climate change impacts, The Nature Conservancy’s 

R2 toolkit: building resilience into coral reef conservation56 recommends a four-level approach 

(see Table 4.1) that condenses practical application of lessons learned by marine protected area 

managers during past bleaching events, such as those developed in the Florida Keys National Marine 

Sanctuary9,60 and the GBR61,53. The development of management approaches that emphasise resilience 

and its application to mitigating the effects of climate change has accelerated with the recognition of 

the potential for a resilience approach. Management approaches have advanced from making general 

recommendations76,64 to providing increasingly technical and specific ones28, 53, and are turning 

towards specific recommendations for monitoring and assessment protocols for protected areas that 

focus on climate-related and resilience indicators61.

4.3.1.9 Social and economic resilience and governance effects on ecological resilience

There are key points at which the ecological resilience of coral reef can be influenced by socio-

economic and governance factors (and vice versa)24,2,1,12. This discussion does not aim to fully 

explore these aspects, or to discuss social, economic or governance issues generally (Fenton et al. 

chapter 23), but rather to illustrate their relevance to ecological significance. Social and economic 

conditions influence patterns of reef use and impacts, such as fishing practices and terrestrial 

land management2,1. Fishing practices may be carefully managed, as on the GBR, or may include 

destructive fishing techniques such as the use of explosives, nets or cyanide. This will have major 

consequences for the abundance, diversity and connectivity of key fish populations, as well as corals 

(through direct damage from explosives, etc). Similarly, social and economic contexts are critical 

to the nature of land management practices, such as land clearing and intensive use of chemical 

fertilisers and pesticides in farming, and to the capacity of local communities to modify those practices 

to reduce impacts on reefs or other habitats. Indeed, social and economic factors are the basis of 

threats to ecosystem resilience, and effective management of those threats requires strategies that are 

socially and economically sustainable14,25,58.

In this context, the significance of governance arrangements is receiving increasing recognition. 

Governance relates to the community’s capacity to make choices that impact on environmental 

quality, biodiversity conservation and the like, and the efficacy of implementing those choices. 

Although governance includes political will and the role of governments, it also includes broader 

aspects, such as the engagement of various community sectors with reefs and their management. 

Again, because all local threats to resilience relate to the activities of people, governance and its 

efficacy directly influence whether resilience is undermined, preserved or strengthened12, 62, 27.

4.4 Resilience of non-reef tropical habitats, ecosystems 
and processes
Although most scientific attention focuses on the coral reefs of the GBR, an estimated 94 percent of 

the area of the Marine Park consists of habitats other than coral reefs. This area includes deep seabed, 

shoals, sponge gardens, sand and mud bottom, deep water seagrass beds, beds and mounds of 

the calcifying green seaweed Halimeda, continental shelf slopes and intertidal mudflats and seagrass 

beds. Not surprisingly, little is known about the factors that contribute to the resilience of most 

of these habitats; subsequent chapters in this volume assess the vulnerability of these habitats to 
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climate change (Diaz-Pulido et al. chapter 7, Waycott et al. chapter 8, Kingsford and Welch chapter 

18). However, the general principles of maintaining physical, ecological and chemical processes and 

structures provide a strong starting point. The major pressures on these habitats are likely to include 

trawling and line-fishing for top predator fishes, and effects of terrestrial runoff, principally in inshore 

areas11. Trawling can dramatically disrupt the physical structure of sea bottom habitats, such as sponge 

gardens and seagrass beds, and also alter ecological structure by removal of target and bycatch species. 

The major impact of line-fishing is on food-web structure through the removal of top predators, many of 

which are highly mobile and provide a basis for connectivity between habitat areas and types. Terrestrial 

runoff contains increased loads of sediments, nutrients and pesticide pollutants (including herbicides), 

which can interfere with the ecological functions of inshore habitats such as seagrass beds39,11.

In the absence of better information, potential management responses to these pressures can initially 

only focus on ensuring that sufficient proportions of the ecosystem are protected from the known and 

likely pressures. These responses include establishing comprehensive, adequate, representative and 

replicated refuges in spatial arrangements that provide a basis for connectivity, and seeking to reduce 

excess runoff of sediments, nutrients and pesticides. Reduction of herbicide pollution is particularly 

important for preserving the resilience of the extensive inshore intertidal seagrass beds11. Similarly, 

mangrove forests face potetntial negative impacts from a range of climate related factors, with a range 

of management measures to mitigate these climate related impacts possible.

4.5 Resilience in the context of species conservation
Many species of particular conservation interest, such as dugongs, turtles, sharks, dolphins and whales, are 

highly vulnerable to human impacts. This is often due to the nature of their life cycles; they may have low rates 

of reproduction, even under ideal conditions, or ’bottlenecks’ that are particularly vulnerable to disruption, 

such as turtle nesting sites. Although populations of these species may be resilient when abundant, many are 

already strongly depressed due to intensive hunting or fishing, or other causes. Under such circumstances, 

even with strong protection, rates of population recovery are unavoidably slow, and show little capacity for 

improving resilience. This suggests that reducing or even completely removing pressures and stresses on 

these species, and managing for resilience, is not likely to be sufficient to regenerate populations within a 

few decades. This is a particular concern in the context of climate change, which is likely to exert significant 

additional pressures (Chin and Kyne chapter 13, Hamann et al. chapter 15, Lawler et al. chapter 16) that 

populations will have little capacity to absorb, adapt to, or recover from.

4.6 Management approaches to maintain resilience of the  
Great Barrier Reef
On the GBR, management approaches have focused on critical issues considered to be threats to 

the ecosystem, such as water quality, sustainability of fishing, and tourism activitiesa. However, it is 

important to recognise that these management issues are not independent. For example, on coral reefs, 

it is known that herbivorous fish can graze down enhanced growth of algae due to nutrient increases, 

providing protection against algal exclusion of corals41. Protecting fish populations thus provides 

additional protection against terrestrial runoff of nutrients. Similarly, minimising pollution of reef waters 

may maintain habitat for herbivorous fishes50. 

a  http://www.gbrmpa.gov.au/corp_site/info_services/publications/brochures/index.html
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The Great Barrier Reef Marine Park is jointly managed by the Australian Government and the Queensland 

Government. The Great Barrier Reef Marine Park Authority focuses on protection of the ecosystems and 

maintenance of the World Heritage values of the Marine Park, and the Queensland State Government 

is responsible for day-to-day management, fisheries management and most catchment management 

activities. 

The Great Barrier Reef Marine Park Authority and the Queensland State Government have jointly 

implemented the Reef Water Quality Protection Planb, aimed at directly addressing terrestrial runoff 

into the GBR. The Great Barrier Reef Marine Park Authority has also implemented a new Zoning Plan, 

which increases protection of biodiversityc. Because this Zoning Plan provides increased protection for 

fishes, it will also provide indirect support for the aims of the Reef Water Quality Protection Plan. The 

integration of these and other measures will enhance the overall resilience of the ecosystem to deal 

with a range of threats, not limited to the original issues, and in turn protect the sustainability of reef-

dependent industries and communities. Importantly, these threats include the impending impacts of 

climate change (see subsequent chapters).

The Great Barrier Reef Marine Park Zoning Plan 2004 
Aims to provide comprehensive, adequate, representative and replicated protection of biodiversity in 

no-take areas, with 33 percent of the total area of the Marine Park in highly protected areas, and more 

significantly, a minimum of 20 percent of each of the 70 bioregions23d. The main activities that are regulated 

by the Zoning Plan include fishing, collecting, research, tourism, boating and shipping. Allocating a 

relatively high proportion of refuge areas aims to maintain natural biodiversity, and, through careful design 

of the Zoning Plan, ensure connectivity between relevant areas (eg fish spawning areas and habitats).

Reef Water Quality Protection Plan 
A joint initiative by the Australian and Queensland Governments, the Reef Water Quality Protection 

Plan aims to halt and reverse the decline in the quality of water entering the reef within ten years. This 

initiative addresses a major component of ecosystem resilience, and importantly, requires most changes 

to take place in the catchment upstream of the GBR. The GBR catchment lies outside the jurisdiction of 

the Great Barrier Reef Marine Park Authority, and therefore implementation is largely the responsibility 

of communities, rural industries and local governments.

Tourism and recreational use 
Tourism and recreation are carefully managed and monitored by the Great Barrier Reef Marine Park 

Authority through the Zoning Plan, Plans of Management in high use areas such as Cairns and the 

Whitsunday Islands, limits on use (aimed at addressing carrying capacities), permits and environmental 

impact assessment requirements for significant developments.

Fishery Management Plans 
Primarily the responsibility of the Queensland State Government, these include Plans for Fin Fish and Coral 

Reef Fisheries, with an Inshore Fisheries Management Plan currently in development. These plans focus on 

fisheries, rather than ecosystem health, and the Great Barrier Reef Marine Park Authority works closely with 

the State Government to ensure the plans are consistent with the need to protect the values of the GBR.

b  http://www.gbrmpa.gov.au/corp_site/key_issues/water_quality/rwqpp.pdf
c http://www.gbrmpa.gov.au/corp_site/management/zoning
d http://www.gbrmpa.gov.au/corp_site/management/zoning/rap/rap/pdf/rap_overview_brochure.pdf
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Importantly, these various management initiatives are not implemented in isolation, but rather as 

an integrated, ecosystem-based package of complementary measures. They seek to address the 

cumulative impacts and interactions between impacts, and not just individual issues. As outlined 

above, there are potentially powerful synergies in, for example, simultaneously minimising inputs 

of sediments, nutrients and pesticides, and ensuring fish biodiversity and abundance is sufficient 

to maintain processes such as herbivory. Inshore areas are especially vulnerable to over-use, and to 

impacts of water quality, and so are carefully considered in both Plans of Management and Fisheries 

Management Plans. Importantly, the broader community increasingly recognise the value of this 

complementary and integrative approach over single-issue initiatives. In combination, these measures 

enhance the resilience of the ecosystem to other stresses and enhance the links to social systems. 

Thus, where previously managers were criticised for addressing water quality while climate change 

was of even greater concern, it is increasingly understood that the best protection against current and 

emerging threats, including climate change, is to ensure the ecosystem is as resilient as possible.

Also significant is the incorporation of adaptive management approaches into the management of 

the GBR. Thus, both the Reef Water Quality Protection Plan and the new Zoning Plan were developed 

in response to emerging scientific evidence that existing management activities were insufficient to 

ensure the long-term resilience of the ecosystem. Emerging understanding of the biodiversity of 

the GBR showed that previous zoning did not provide sufficient coverage of many bioregions. New 

research and monitoring suggested that degradation of inshore habitats was the most likely outcome 

of previous land-use practices39. Management is continuing this adaptive approach, developing 

monitoring and research programs to assess the adequacy and impacts of management actions 

and strategies, as a basis for future policy development, refinement and adaptation. Included are 

programs that focus on specific management initiatives, such as the Zoning Plan and the Reef Water 

Quality Protection Plan, and programs that assess the overall status of the ecosystem, and the related 

industries and communities. 

4.7 Outlook: resilience in the face of changing climate
A key aspect of an adaptive management approach is the realisation of the emerging but urgent need 

to prepare for the effects of global climate change on the GBR and its habitats. Effective measures to 

achieve this will require the best possible information about the likely vulnerability to climate change 

of the various ecosystems and taxa. The present volume is intended to make a start in compiling that 

information, and clearly demonstrates that impacts are likely to be not only dramatic, but also very 

difficult to predict with any precision. There is, and is likely to remain, considerable uncertainty about 

the nature and extent of direct effects and of their interactions with other stressors. As an emerging 

area of science, assessment of vulnerability to climate change tends to focus on direct effects of 

climate change on systems and processes, perhaps considering interactions between impacts or 

stressors (eg climate change and overfishing or eutrophication). However, climate change stressors 

will also affect the ability of these systems and processes to respond to other stressors. This means 

that the resilience of the various ecosystems and taxa is likely to be threatened to an unprecedented 

extent. This, along with the considerable inherent uncertainty about these changes, will significantly 

increase the challenge of adaptively managing and maintaining ecosystem integrity. Chapter 24 of 

this volume (Marshall and Johnson) aims to take up this challenge.
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