Glossary of Terms

acclimation changes in tolerance under laboratory or other experimental conditions, generally over the short term

acclimatisation phenotypic changes by an organism to stresses in the natural environment that result in the re-adjustment of the organism’s tolerance levels

adaptation an adjustment that moderates harm or exploits beneficial opportunities in natural or human systems in response to actual or expected climatic changes or their effects. A ‘biological adaptation’ is a phenotypic variant that results in highest fitness among a specific set of variants in a given environment; it occurs when the more vulnerable members of a population are eliminated by an environmental stress, leaving the more tolerant organisms to reproduce and recruit to available habitat

adaptive capacity the potential for a species or system to adapt to climate change (including changes in variability and extremes) so as to maximise fitness; moderate potential damages; or take advantage of opportunities, such as increased space availability

amphidromic a point within a tidal range where the tidal range is almost zero

arboreal relating to or resembling a tree

Argo global array of free-drifting profiling floats measuring temperature and salinity of the ocean

arthropods characterised by a segmented body, chitinous exoskeleton, paired, jointed limbs and in the class Crustacea

assemblage multiple species of plants and animals living in the same place and time

Atlantic meridional overturning circulation carries warm surface waters into far-northern latitudes and returns cold deep waters south across the Equator. Its heat transport makes a substantial contribution to the moderate climate of maritime and continental Europe, and any slowdown in the overturning circulation would have profound implications for climate

attribution the process of establishing cause and effect with some defined level of confidence

autotrophs produce sugars that are essential to consumers, in the pelagic environment, this is usually through photosynthesis (see phytoplankton). Autotrophs are the foundation of marine food chains

azooxanthellate organisms that do not contain microscopic single-celled algae called zooxanthellae, which are commonly found in soft and hard corals

biodiversity the number and relative abundance of different genes (genetic diversity), species, and ecosystems (biological communities) in a particular area

bioturbation the displacement and mixing of sediment layers by benthic plants and animals

bottom-up control refers to ecosystems in which the nutrient supply, productivity, and type of primary producers (plants and phytoplankton) control the ecosystem structure

broadcast spawning the simultaneous release of sperm and eggs into the water column. Many species of corals, fish and benthic invertebrates exhibit synchronised spawning in order to increase the chances of fertilization and maximise genetic diversity

Cephalopoda means ‘head foot’ and refers to a class of marine molluscs with well-developed senses and large brains, for example squid and octopi

chronostratigraphic a graphic display, with geologic time along the vertical axis and distance along the horizontal axis, to demonstrate the relative ages and geographic extent of strata in a given location (also known as a Wheeler diagram)

climate the ‘average weather’, or more rigorously, the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands of years. The classical period is 30 years, as defined by the World Meteorological Organization. These quantities are most often surface variables such as temperature, precipitation, and wind

climate change a change of climate that is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods (United Nations Framework Convention on Climate Change) (see climate variability). The concept of increased emissions over time and gradual changes in climate is well accepted. Importantly though, fossil evidence clearly demonstrates that the Earth’s climate can shift within a decade, establishing new patterns that can persist for decades to centuries. Climate change, therefore, can refer to either a gradual or abrupt change in climatic conditions

climate variability variations in the mean state and other statistics of the climate (such as standard deviations and the occurrence of extremes) on all temporal and spatial scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (internal variability), or to variations in natural or anthropogenic external forcing (external variability) (see also climate change)
Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Glossary of Terms

CLIVAR a program run by the World Climate Research Program that works to describe and understand the physical processes responsible for climate variability and predictability on seasonal, interannual, decadal, and centennial time-scales, through the collection and analysis of observations and the development and application of models of the coupled climate system.

connectivity natural links among reefs and neighbouring habitats, especially seagrass beds, mangroves and back-reef lagoons that provide dispersal and genetic replenishment. Also refers to linkages among coastal lands and adjacent catchments, which are sources of freshwater, sediments and pollutants. The mechanisms include ocean currents, terrestrial runoff and watercourses, larval dispersal, spawning patterns, and movements of adult fishes and other animals. Connectivity is an important process to ensure the productive function of the plant and animal species that contribute to the overall health of an ecosystem.

copepod small pelagic crustaceans (0.3 to 5 mm long) that are important consumers of phytoplankton and some zooplankton, and form an important food source for higher trophic levels.

coral bleaching the paling of corals and other animals with zooxanthellae resulting from a loss of these symbiotic algae. Bleaching occurs in response to physiological shock due primarily to periods of increased water temperature coincident with high levels of light (see mass coral bleaching). Bleaching can also be caused by changes in salinity or turbidity.

Coriolis effect the apparent deflection of objects from a straight path when the objects are viewed from a rotating frame of reference. The best example is the deflection of winds moving along the surface of the Earth to the right of the direction of travel in the Northern Hemisphere and to the left in the Southern Hemisphere. This effect is caused by the rotation of the Earth and is responsible for the direction of the rotation of tropical storms and cyclones.

cryptofauna animals that are difficult to see when making cursory observations of a habitat. They are usually small and in most cases, highly dependent on their habitats for shelter and food. In the marine environment, these are demersal animals.

drought a common measure of ENSO is the Southern Oscillation Index (SOI), which is the normalised mean sea level pressure difference between Tahiti and Darwin. The SOI is positive during La Niña events and negative during El Niño events.

East Australian Current (EAC) a current that originates in the Coral Sea and flows southward along the east coast of Australia.

Echinodermata a phylum of radially symmetrical invertebrates that have an internal calcareous skeleton and are often covered with spines, for example starfish and sea cucumbers.

Ecosystem a community of organisms, interacting with one another and the environment in which they live. Such a system includes all abiotic components such as mineral ions, organic compounds, and the climatic regime.

ectotherm having a body temperature that varies with the temperature of the surrounding environment.

Effective Juvenile Habitats (EJH) habitats that have a greater than average overall contribution to adult populations.

Ekman transport process by which each layer of water in the ocean drags with it the layer beneath. Thus, the movement of each layer of water is affected by the movement of the layer above.

emissions scenario scenarios describing how greenhouse gas emissions could progress between 2000 and 2100, depending on various hypotheses about human societies and behaviour. As there are an infinite number of possibilities to describe future emissions, scenarios are necessarily conventional with each reflecting a plausible state of the future world. The IPCC has published 40 scenarios grouped into four types (A1, A2, B1, B2) with each representing a different evolution of humanity and associated rates of energy consumption and food production.

endemic native to or confined to a certain geographical region.

endogeneous originating or produced from within an organism, tissue or cell.

enhanced greenhouse effect increasing concentrations of greenhouse gases in the atmosphere trap more heat and raise the Earth’s surface temperature.

El Niño-Southern Oscillation (ENSO) widespread two to seven year oscillations in atmospheric pressure, ocean temperatures and rainfall associated with El Niño (the warming of the oceans in the equatorial eastern and central Pacific) and its opposite, La Niña. Over much of Australia, La Niña brings above average rain, and El Niño brings drought. A common measure of ENSO is the Southern Oscillation Index (SOI), which is the normalised mean sea level pressure difference between Tahiti and Darwin. The SOI is positive during La Niña events and negative during El Niño events.

eutrophic zone the depth of water that is exposed to sufficient sunlight for photosynthesis to occur.

eutrophication the increase in dissolved nutrients and decrease in dissolved oxygen in a (usually shallow) body of water, caused by either natural processes or pollution.

exogeneous derived or developed outside the body; to originate externally.

Cryptofauna small pelagic crustaceans (0.3 to 5 mm long) that are important consumers of phytoplankton and some zooplankton, and form an important food source for higher trophic levels.
exposure the nature and degree to which a system or species is exposed to significant climate variations. In a climate change context, it captures the important weather events and patterns that affect the system. Exposure represents the background climate conditions against which a system or species operates, and any changes in those conditions

fissiparous reproducing by biological fission, a process in which the organism breaks into parts

genotype the genetic makeup, as distinguished from the physical appearance, of an organism or a group of organisms

geostrophic current the current that results from the forces associated with horizontal changes in density being compensated by accelerations arising from fluid motion on a rotating Earth

global temperature usually referring to the surface temperature, this is an area-weighted average of temperatures recorded at ground- and sea-surface-based observation sites around the globe, supplemented by satellite-based or model-based records in remote regions

global warming an increase in global average surface temperature due to natural or anthropogenic climate change

gravity wave in fluid dynamics, these waves can be generated in a fluid medium or at the interface between two mediums (e.g., the atmosphere and ocean) and have the restoring force of gravity, which often results in the wave oscillating around an equilibrium

Great Barrier Reef (GBR) tropical marine ecosystem on the northeast coast of Australia that comprises of reef, seagrass, inter-reef, pelagic, shoals and mangrove habitats and includes the islands, cays and coastal areas that are connected physically and biologically

greenhouse gases any of the atmospheric gases that contribute to the greenhouse effect. Naturally occurring greenhouse gases include water vapor, carbon dioxide, methane, nitrous oxide and ozone. Certain human activities, such as the burning of fossil fuels, add to the concentration of these naturally occurring gases in the atmosphere

greenhouse effect greenhouse gases that are present naturally in the Earth's atmosphere trap heat from the sun to maintain the Earth's surface temperature at a habitable level

heterotrophs consumers that cannot synthesise their food and must consume other plants or animals, for example zooplankton and nekton

impacts the adverse effect resulting from a threat acting on a vulnerability. Can be described in terms of loss or degradation of any, or a combination of any, ecological, social or economic features

insolation a measure of incoming solar radiation incident on a unit horizontal surface at a specific level

Intergovernmental Panel on Climate Change (IPCC) an organisation set up in 1988 by the World Meteorological Organization and the United Nations Environment Program to advise governments on the latest science of climate change, its impacts and possible adaptation and mitigation. It involves panels of climate and other relevant experts who assess climate change-related information and prepare reports, which are then critically reviewed by researchers and governments from member countries around the world

iteroparous to produce offspring across multiple seasons or years

larval phase the early developmental life phase of an animal that is usually different to its adult form. In the marine environment, larvae are often pelagic. In the case of benthic organisms, settlement to the bottom marks the end of this phase (other terms include pre-settlement phase and pelagic larval duration). For pelagic species, growth into a juvenile is the end of the larval phase

latent heat the heat released or absorbed per unit mass by a system in a reversible isobaric-isothermal change of phase. In tropical oceanography, the latent heat of evaporation (or condensation) is of importance

lecithotrophic describing larvae that do not feed during their planktonic phase but rather derive nutrition from yolk

longwave radiation heat radiation with wavelengths greater than 4 micrometres (infra-red)

Madden-Julian Oscillation (MJO) an atmospheric cycle characterised by the eastward movement of large regions of both enhanced and suppressed tropical rainfall, observed mainly over the Indian Ocean and Pacific Ocean. Cycles last between 30 to 60 days.

marine snow a continuous shower of mostly organic detritus falling from the upper layers of the water column, including dead or dying animals and plants, faecal matter, sand, soot and other inorganic dust. As sunlight cannot reach them, deep-sea organisms rely heavily on marine snow as a source of energy

mass coral bleaching coral bleaching extending over large areas (often affecting reef systems spanning tens to hundreds of kilometres) as a result of anomalously high water temperatures (see also coral bleaching)

mesograzers organisms able to use individual seaweeds as both habitat and food. Mesograzers can acquire enemy-free space by inhabiting and consuming seaweeds that are chemically defended against larger, more mobile consumers.

mitigation mitigation of climate change refers to those responses that reduce the sources of greenhouse gas emissions into the atmosphere or enhance their sinks. Targets are usually set with respect to a baseline scenario, thus avoiding exceeding the adaptive capacity of natural systems and human societies

molluscs a phylum in which organisms are characterised by a shell-secreting organ, the mantle, and a radula, a food- rasping organ located in the forward area of the mouth

Climate Change and the Great Barrier Reef: A Vulnerability Assessment
Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Glossary of Terms

Morphoedaphic Index (MEI) the total dissolved solids in mg/litre divided by mean depth in metres. The MEI was first developed by Richard A. Ryder in the mid-1960s as an estimator of potential fish yield in lakes, and can be used to predict both fish harvest and standing crop.

nekton aquatic organisms that are self-propelled (ie not at the whim of the currents) and are large consumers that include squid, fishes, turtles and whales.

neogastropods an order of gastropods that contains the most highly developed snails whereby respiration is performed by means of ctenidia, the nervous system is concentrated, an operculum is present, and the sexes are separate.

nutrient-phytoplankton-zooplankton models models that describe the relative interactions of nutrients, phytoplankton and zooplankton in an environment. These can range in complexity, depending on the environment in question, and/or the focus of the research.

octocorals commonly called ‘soft corals’, they are not close relatives of the Scleractinia, or ‘hard corals’ that have hexaradial symmetry. Octocorals have eightfold radial symmetry, and are made up of colonial polyps, which, in some, perform specialised functions. Excepting the ‘blue coral’ and ‘organ-pipe’ corals, few produce substantial calcium carbonate skeletons while some produce calcified holdfast structures.

oligotrophic nutrient-poor waters.

ontogenetic the origin and development of an individual organism from embryo to adult.

osmoregulation maintenance of an optimal, constant fluid pressure in the body of a living organism.

oviparous to produce eggs that hatch outside the body.

Pacific Decadal Oscillation (PDO) a long-lived El Niño like climate pattern with the same spatial implications for climate but lasting from 20 to 30 years rather than the six to 18 months seen in the **El-Niño-Southern Oscillation**.

panmictic random mating within a breeding population.

pelagic living in open water (from plankton to whales).

phenology the scientific study of periodic/seasonal biological phenomena, such as flowering, breeding and migration, as they relate to climate conditions.

phenotype the observable physical or biochemical characteristics of an organism, as determined by both genetic makeup and environmental influences.

phenotypic plasticity the ability of an organism with a given genetic makeup to change its phenotype in response to changes in the environment.

photoinhibition reduction in photosynthetic capacity following damage to the light-harvesting reactions of the photosynthetic apparatus caused by excess light energy.

photoprotection the use of compounds to minimise the harmful effects of excess light energy.

photorespiration oxidation of carbohydrates in plants with the release of carbon dioxide during photosynthesis, which lowers the efficiency of photosynthesis.

photosensitise to make an organism, cell or substance sensitive to light.

photosynthesis the process in which plants, and some bacteria and protists convert sunlight energy, carbon dioxide and water into sugars and starch. It is a highly complex process beginning with the capture of sunlight by the green pigment chlorophyll and the release of oxygen from water.

photosynthetically active radiation the spectral range of solar light from 400 to 700 nanometres that is used in the process of photosynthesis. Light energy at shorter wavelengths tends to be so energetic that it can damage cells and tissues, though most are filtered out by the ozone layer. Light energy at longer wavelengths does not carry enough energy to allow photosynthesis to take place.

phytoplankton plant plankton that require light to photosynthesise; they are essential to higher trophic level consumers, such as zooplankton.

plankton all organisms that are considered ‘wanders’ or ‘drifters’. Plankton includes viruses, autotrophs and heterotrophs, phytoplankton and zooplankton.

planktotrophic larvae that feed on plankton.

pneumatophores erect roots in swamp dwelling plants such mangroves that are an extension of the underground root system. Since these roots are exposed at least part of the day to the air and not submerged underwater, the root system can obtain oxygen in an otherwise anaerobic substrate, for example mangrove sediments.

poikilothermic having a body temperature that varies with the temperature of the surrounding environment (eg a fish or reptile); an ectotherm.

polyplacophorans refers to chitons, an order of molluscs distinguished by an elliptical body with a dorsal shell comprised of eight overlapping calcareous plates.
prediction a statement that something will happen in the future, based on known conditions at the time the prediction is made, and assumptions as to the physical or other processes that will lead to change. Since present conditions are often not known precisely, and the processes affecting the future are not perfectly understood, such predictions are seldom certain, and are often best expressed as probabilities.

primary productivity rate at which light energy is used by producers to form organic substances that become food for consumers.

projection a set of future conditions, or consequences, derived on the basis of explicit assumptions, such as scenarios. Even for a given scenario or set of assumptions, projections introduce further uncertainties due to the use of inexact rules or 'models' connecting the scenario conditions to the projected outcomes.

radiation emission or transfer of energy in the form of electromagnetic waves.

refuges place where species and/or communities survive environmental changes. Species may remain restricted to the vicinity of a refuge or disperse from a refuge thus recolonising wider areas following further environmental changes. Past refuges might include places where species have survived glacial periods.

resilience the ability of system to absorb shocks, resist phase shifts and regenerate and reorganise so as to maintain key functions and processes without collapsing into a qualitatively different state that is controlled by a different set of processes.

risk probability that a situation will produce harm under specified conditions. It is a combination of two factors: the probability that an adverse event will occur; and the consequences of the adverse event. Risk encompasses impacts on human and natural systems, and arises from exposure and hazard. Hazard is determined by whether a particular situation or event has the potential to cause harmful effects.

sea surface temperature the temperature of ocean water at the surface. In practical terms, this will vary depending on the method of measurement used. Infrared radiometers attached to orbiting satellites typically measure the temperature in the top ten microns of the water column while drifting or moored buoys take temperature readings from the top 1 metre.

scaphopods predatory molluscs with a tubular and, generally, curved shell having openings at both ends.

scenario a coherent, internally consistent and plausible description of a possible future state of the climate. Similarly, an emissions scenario is a possible storyline regarding future emissions of greenhouse gases. Scenarios are used to investigate the potential impacts of climate change; emissions scenarios serve as input to climate models.

schema the organization of experience in the mind or brain that includes a particular organised way of perceiving and responding to situations and stimuli.

sensible heat the heat absorbed or transmitted by a substance during a change of temperature which is not accompanied by a change of state. Used in contrast to latent heat.

sensitivity the degree to which a system is affected, either adversely or beneficially, by climate related stimuli, including average climate characteristics, climate variability and the frequency and magnitude of extremes.

sensu (in sensu stricto) in a narrow or strict sense.

shortwave radiation radiation in the visible and near-visible portions of the electromagnetic spectrum (roughly 0.4 to 4.0 micrometres in wavelength).

sink reefs reefs that receive larvae via ocean currents. Some reefs may be sinks at one time of year and sources at another time, where monsoonal currents reverse in different seasons.

social-ecological collective term for the natural and human components of the Great Barrier Reef; that is, the ecosystem and the industries and communities that interact with it.

socioeconomic the study of the relationship between economic activity and social life. This is a multidisciplinary field using theories and methods from sociology, economics, history, and psychology.

source reefs reefs that have the potential to supply larvae to other reefs via ocean currents. Some reefs may be sinks at one time of year and sources at another time, where monsoonal currents reverse in different seasons.

Southern Annular Mode (SAM) a ring of climate variability that encircles the South Pole and extends out to New Zealand, and involves alternating changes in wind and storm activity.

Southern Equatorial Current (SEC) a broad, westward flowing current that extends from the surface to a nominal depth of 100 metres. Its northern boundary is usually near 4° N, while the southern boundary is usually found between 15 and 25° S.

Southwest Pacific Circulation and Climate Experiment (SPICE) a multi-organisational experiment working to observe, model and understand the role of the southwest Pacific ocean circulation in the large-scale, low-frequency modulation of climate from the Tasman Sea to the equator, as well as the generation of local climate signatures.

spermatogenic formation and development of spermatozoa by meiosis and spermiogenesis.

spongin a sulfur-containing protein related to keratin that forms the skeletal structure of certain classes of sponges.
Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Glossary of Terms

Stomatopoda an order of crustacean containing four families of narrow and elongate-bodied mantis shrimps

strata a bed or layer of rock or soil with internally consistent characteristics that distinguishes it from contiguous layers

sublittoral lying between the low tide line and the landward edge of the continental shelf

superspecies a grouping of very closely related species with common ancestry that have developed into true species due to their geographical location

sustainability activities that meet the needs of the present without having a negative impact on future generations. A concept associated with sustainability is triple bottom line accounting, taking into account environmental, social and economic costs

teleconnection linkage between changes in atmospheric circulation occurring in widely separated parts of the globe

terragenous of or derived from the land and often used to describe sediments that enter the marine environment by erosive action

thalassineans a group of thin-shelled decapod crustaceans that live in burrows in the muddy bottoms of the world’s oceans

thermomix the region of transition between the warmer warmer waters and colder deep oceanic water

thermoregulation maintaining a constant internal body temperature independent of the surrounding environmental temperature

threshold any level in a natural or socioeconomic system beyond which a defined or marked change occurs. Gradual climate change may force a system beyond such a threshold. Biophysical thresholds represent a distinct change in conditions, such as the drying of a wetland. Climatic thresholds include frost, snow and monsoon onset. Ecological thresholds include breeding events, local to global extinction or the removal of specific conditions for survival

top-down control biomass at different levels of the food chain is controlled from the top, for example fisheries take fish that consume zooplankton, this allows the abundance of phytoplankton to increase (see bottom-up control)

trophic focusing the biomass of organisms is aggregated in certain regions of abrupt topography (eg a seamount). It generally results in biomass (and diversity) decreasing further offshore and deeper. This is because primary productivity is highest closest to the ocean surface and close to coastlines

uncertainty the degree to which a value is unknown, expressed quantitatively (eg a range of temperatures calculated by different models) or qualitatively (eg the judgement by a team of experts on the likelihood of the West Antarctic Ice Sheet collapsing). Uncertainty in climate projections is primarily introduced by the range of projections of human behaviour which determine emissions of greenhouse gases, and the range of results from climate models for any given greenhouse gas

upwelling process whereby cold, often nutrient-rich waters from the ocean depths rise to the surface

vermivorous to feed on worms, grubs, or insect vermin

vitellogenin formation of the yolk of an egg

viviparous in animals giving birth to living offspring that develop within the mother’s body; in plants producing seeds that germinate before becoming detached from the parent plant, for example some mangroves

vulnerability the degree to which a system or species is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system or species is exposed, its sensitivity, and its adaptive capacity

West Pacific Warm Pool (WPWP) a body of water, which spans the western waters of the equatorial Pacific to the eastern Indian Ocean and holds the warmest seawater in the world

zoogeographic species concept closely related species with common ancestry that have developed into true species due to their geographical location

zooplankton animal plankton that range in size from a few microns to metres, for example some jellyfish

zooxanthellae microscopic single-celled algae (usually dinoflagellates) that form symbiotic relationships with corals, sea anemones, molluscs and several other types of marine invertebrates and provide photosynthetic products (ie energy) to the host animal in return for shelter
Symbol Glossary

ANIMALS

<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Symbol</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branching coral</td>
<td>![Branching coral]</td>
<td>Pelagic tunicates</td>
</tr>
<tr>
<td>Plate coral</td>
<td>![Plate coral]</td>
<td>Butterflyfish</td>
</tr>
<tr>
<td>Massive coral</td>
<td>![Massive coral]</td>
<td>Rabbitfish</td>
</tr>
<tr>
<td>Anenome</td>
<td>![Anenome]</td>
<td>Coral trout</td>
</tr>
<tr>
<td>Soft coral</td>
<td>![Soft coral]</td>
<td>Parrotfish</td>
</tr>
<tr>
<td>Gorgonian</td>
<td>![Gorgonian]</td>
<td>Damselfishes</td>
</tr>
<tr>
<td>Sponge</td>
<td>![Sponge]</td>
<td>Goby</td>
</tr>
<tr>
<td>Sponge larvae</td>
<td>![Sponge larvae]</td>
<td>Barramundi</td>
</tr>
<tr>
<td>Coral larvae</td>
<td>![Coral larvae]</td>
<td>Trevally</td>
</tr>
<tr>
<td>Copepods</td>
<td>![Copepods]</td>
<td>Whiting</td>
</tr>
<tr>
<td>Juvenile fish</td>
<td>![Juvenile fish]</td>
<td>Flyingfish</td>
</tr>
<tr>
<td>Sea birds</td>
<td>![Sea birds]</td>
<td>Black marlin</td>
</tr>
<tr>
<td>Noddy</td>
<td>![Noddy]</td>
<td>Eel</td>
</tr>
<tr>
<td>Sooty oystercatcher</td>
<td>![Sooty oystercatcher]</td>
<td>Baitfish</td>
</tr>
<tr>
<td>Created tern</td>
<td>![Created tern]</td>
<td>Bull shark</td>
</tr>
<tr>
<td>Pied imperial pigeon</td>
<td>![Pied imperial pigeon]</td>
<td>Mako shark</td>
</tr>
<tr>
<td>Bar-tailed godwit</td>
<td>![Bar-tailed godwit]</td>
<td>Hammerhead shark</td>
</tr>
<tr>
<td>Capricorn white-eye</td>
<td>![Capricorn white-eye]</td>
<td>Sawfish</td>
</tr>
<tr>
<td>Jellyfish</td>
<td>![Jellyfish]</td>
<td>Blacktip reef shark</td>
</tr>
</tbody>
</table>

Climate Change and the Great Barrier Reef: A Vulnerability Assessment
Symbol Glossary

Environment

- Sun
- Rain - high/low
- Cyclone/wind
- Calcareous sand
- Siliceous sand
- Mud
- Temperature - cool/warm/hot
- pH - alkaline/acidic
- Reef rubble
- Dead coral

Plants

- Mangroves
- Seagrass
- Seagrass seeds
- Fleshy macroalgae
- Turf algae
- Crustose coralline algae
- Wetland vegetation
- Terrestrial vegetation
- Island vegetation
- Casuarina
- Argusia
- Rare terrestrial plant
- Grasslands
- Terrestrial wood

Processes

- Elevated temperature
- Nutrients - pulsed input
- Freshwater - pulsed input
- Sediment - pulsed input
- Sediment scouring
- Sediment burial
- Sediment resuspension
- Light attenuation/extinction
- Loss
- Flood plume
- Coral recruitment - good/poor
- Upwelling
- Desiccation
- Nutrient uptake
- Flux - in/out
- Currents
- Flushing - poor/good
- Mixing
- Wave energy
- Sea level rise
- Flux - low/high
- Limitation - carbon
- CO₂ concentration - low/high
- HCO₃⁻ concentration - low/high
- Salinity - low/high
- Decomposition
- Growth
- Coral growth - slow/rapid
- Timing altered
- Shoreward migration/barrier
- Reef substrate bioerosion
Index

A

Aboriginal and Torres Strait Islander people, 6, 764–5, 784–5, 796
acidification of oceans see ocean chemistry
adaptation, defined, 748
adaptive capacity, defined, 748
see also vulnerability assessment
agricultural industry, 7–8
see also industries and communities
air temperature, 22
observed and projected changes, 27–33, 45–7, 775
air temperature changes
effects on species and habitats
island flora and fauna, 632–6
mangroves, 247
marine reptiles, 472–83
seagrasses, 201–4
sharks and rays, 399
algae
macroalgae see macroalgae
microalgae, 154 see also phytoplankton
algal turfs see turf algae
animal diseases, 635
anthropogenic factors see human activities
Asian monsoon system, 45, 67
see also atmospheric circulation
atmospheric chemistry changes
effects on species and habitats
island flora and fauna, 636–8
mangroves, 247–8
atmospheric circulation, 20–7, 45, 54–5

B

bacteria see marine microbes
bait fish, 564
beaches and spits, 676–7, 695–8, 707
benthic algae, 82–3, 154–5
see also macroalgae
benthic environments, 101
benthic invertebrates, 310–44
adaptive capacity, 330–3
management, 343
research gaps, 343–4
role, 317–19, 335–6
vulnerability to climate change, 319–43, 779
benthic macroalgae see macroalgae
bio-indicator organisms, 104
biodiversity, 3, 5, 83–4, 123–4, 310–17, 608
birds, 627–9, 655–6
see also seabirds
brittle stars see echinoderms

C

carbon cycle, 100–1, 106–8, 112, 158, 244
carbon dioxide concentration, 722–3
effects of elevated concentrations, 219–21, 637–8
projections, 47
carbon sinks, 44, 158
cays, 639–40, 643
g geomorphology, 673–6
vulnerability to climate change, 689–98, 782
see also islands
chondrichthyan fishes, 394–421
see also rays; sharks
climate, 5, 16–20, 45–6
current surface climate, 20–7
observed and projected, 27–44
climate change, 2, 16–20
catastrophic, 44–5, 296, 643, 725, 736
certainties, 45–6
community and industry impacts, 746–69, 784–7, 795–7
ecological resilience, 76–92
evidence for, 20
historical perspective, 718–36, 783
policy responses, 797–800
potential management responses see management responses to climate change
projections of, 18–20, 27–44, 47
stakeholder understanding of, 756–61, 767–8
climate change vulnerability see vulnerability assessment
climate scenarios, 27–8, 47, 534–5
climate surprises, 44–5
climate variability, 17, 24–7, 434–49
climate vulnerability see vulnerability assessment
coastal development and planning, 766–7, 787
coastal habitats, 594–5, 600–10
adaptive capacity, 611
exposure to climate change, 596–7
management responses to climate change, 611
research gaps, 611–12
vulnerability to climate change, 597–611, 782, 794–5
coasts
g geomorphology, 677–8
vulnerability to climate change, 698–704, 707
commercial fishing, 6–7, 245, 565–7, 763, 786–7, 797
see also fisheries; recreational fishing
communities and industries, 7–8, 746–69, 784–7, 795–7
connectivity, 85, 605–6
research gaps, 612
conservation and management of GBR see Great Barrier Reef; natural resource management organisations
coral bleaching, 2, 82, 87–9, 104, 273–81, 284–5, 288, 291–8, 404, 516, 798
coral cays see cays; islands
coral disease, 103–4, 106, 108, 292–4
coral mortality, 160, 172–3, 275–9, 284, 288, 295–6
coral reefs, 3, 6, 272–3, 516–17, 683
 adaptive capacity, 533–4, 733–4
degradation, 158, 160
ecological resilience, 76–92, 535–6
flora and fauna, 272, 312
framework and construction, 108, 159, 272
future scenarios, 534–5
geomorphology, 670–3
impacts of climate change, 517–32
linkages with other ecosystems, 545
management responses to climate change, 545–7
palaeoecology, 718–38
research gaps, 547–8, 738
vulnerability to climate change, 534–45, 684–9, 706, 720–36, 781–2
see also corals; Great Barrier Reef
Coral Sea circulation, 60–4, 71
coral settlement, 103, 158, 159
corals
 associated with marine microbes, 102–3
critical factors for survival, 272–3
importance of, 294–5
research gaps, 299
role of reef-building corals in GBR, 81–2, 272–3
vulnerability to climate change, 274–98, 779
see also coral bleaching; coral disease; coral mortality; coral reefs
crocodiles see estuarine crocodiles
crown-of-thorns starfish, 342
krill, 315–16, 318–19
krill crustose calcareous (calcified) algae
 impacts of changes in specific environmental
 conditions, 160–73
 vulnerability to climate change (summary), 180–2
currents, 5, 55–6, 60–71, 105, 131, 400
 see also ocean circulation; ocean circulation changes
cyanobacteria, 154
cyclones see tropical cyclones
D
decadal variability see Pacific Decadal Oscillation
diseases, 103–6, 108–9, 113–14, 635
 see also coral disease; animal diseases
disturbance (physical disturbance)
 effects on corals, 287–9
effects on mangroves, 257
and seagrass survival, 200, 208–10
see also tropical cyclones
diversity see biodiversity
dolphins, 498–510, 560–1
drought, 37–8
dugongs, 498–510, 560–1
E
East Australian Current, 5, 60–3, 65–7, 71, 131
echinoderms, 313–14, 318
ecological functions, 601–3, 607
 see also particular species and species groups,
eg corals, fishes
ecological resilience, 76–92, 608, 789–95
economic benefits see social and economic benefits of GBR
ecosystems, 3–4, 45, 110, 113–14, 140–1, 600–1
 coastal see coastal habitats
 pelagic see pelagic ecosystems
 resilience see ecological resilience
 see also habitats; particular ecosystems, eg,
coral reefs; pelagic ecosystems
eddies, 62–3
emissions scenarios, 27–8, 47
enhanced greenhouse effect 44–5, 296
see greenhouse effect
ENSO phenomenon see El Niño-Southern Oscillation
estuarine crocodiles, 470, 471
 vulnerability to climate change, 472–89
estuarine habitats, 594–5, 600–10
 adaptive capacity, 611
 exposure to climate change, 596–7
 management responses to climate change, 611
 research gaps, 611–12
 vulnerability to climate change, 597–611
exposure to climate change drivers see vulnerability assessment
extinction risk
 benthic invertebrates, 339–42
 of corals, 296
extinctions, 727
F
fauna see flora and fauna
fire, and terrestrial flora, 626, 650
fisheries, 379–80, 565–6, 786–7
 importance of mangroves, 245
 management of, 91, 379
 see also commercial fishing
fishes, 358–60, 560–1
 adaptive capacity, 378
 bait fish, 564
 critical factors for survival, 359–60
 management, 382–3
 planktivores, 126–7
 population and communities, 366–77, 379
research gaps, 382–3
vulnerability to climate change, 360–6, 380–2, 779–80, 793–4
fishing, 6–7, 245, 565–7, 763, 786–7, 797
flooding see freshwater inputs; rainfall changes; river plumes
flora and fauna, 601–3
of coral reefs, 272, 312
of GBR islands see island flora and fauna
of mangroves and salt marshes, 244–6
see also particular species and species groups, eg corals, fishes
food
in pelagic ecosystems, 562–3
plankton as, 126–7, 563
food webs, 100, 158, 603–5
fossil record, 675, 718–20, 722, 727–31, 736, 783
freshwater inputs, 37–8
see also rainfall; river plumes; terrestrial inputs
freshwater wetlands, 628, 635–6, 654

G

gelatinous zooplankton see jellyfish
geologic time scale, 719
geomorphological features
exposure and sensitivity to climate change, 669–70, 679–83
management responses to climate change, 708
vulnerability to climate change, 684–708
geomorphology, 668
research gaps, 708–9
global climate change see climate change; climate variability
global warming, 2, 17–20, 41, 44, 643
evidence for, 20
and heat content of oceans, 34, 52, 71
see also sea surface temperature
impact of human activities, 2, 17–20
see also climate change; greenhouse effect
Great Barrier Reef, 2–9, 516–17, 774–87
bathymetry, 64
ecological resilience, 81–9, 789–95
ecosystems see ecosystems
geomorphology see geomorphology
human associations with, 5–8
management of climate change impacts see management responses to climate change
oceanography see oceanography
physical environment, 5, 64, 558, 598–9
tourism see tourism
vulnerability to climate change (summary), 2, 9–12, 774–87
see also coral reefs; particular species and species groups, eg corals, fishes
Great Barrier Reef Marine Park, 3, 8–9, 91–2, 799

H

habitats, 3, 600–1
ecological resilience of, 81–9
habitat formation, 159
research gaps, 613
vulnerability to climate change (summary), 781–2
see also coastal habitats; ecosystems; estuarine habitats; particular species and species groups, eg corals, fishes
heat content, of ocean, 34, 52, 71
see also sea surface temperature; water temperature
Hiri Current, 5, 60–2, 65–7
human activities
and climate change, 2, 17–20
impact on coastal habitats, 608–10
human association with Great Barrier Reef, 5–8
human pathogens, 108–9
human population of GBR region, 7–8

I

ice sheet disintegration, 41, 44, 643
industries and communities, 7–8, 746–69, 784–7, 796
Inter-decadal Oscillation see Pacific Decadal Oscillation
Intergovernmental Panel on Climate Change, 10, 41, 98
Special Report on Emission Scenarios, 27–8, 47
International Coral Reef Initiative, 797–8
intertidal wetlands see tidal wetlands
invertebrates
benthic see benthic invertebrates of GBR islands, 634 see also island flora and fauna
irradiation see light availability; ultraviolet radiation
island flora and fauna, 624–9
interactions and linkages between stressors, 650–3
management responses to climate change, 659–60
research gaps, 661
summary of impacts, 657–9
vulnerability to climate change, 630–50, 653–60
islands, 622–3, 639
game, 371–4, 397, 600–3
geomorphology, 695–7, 764–5
vulnerability to climate change, 869–98
J
jellyfish, 558–60
see also zooplankton

K
keystone species, 342

L
larvae, 562–3
light availability

effects on species and habitats
 benthic invertebrates, 320, 323–4, 328, 331–2, 334
coral reefs, 523–5
corals, 279–84
fishes, 364
island flora and fauna, 638
macroalgae, 166–7
marine reptiles, 483–4
plankton, 128, 137–8
seagrass survival, 199, 204–8, 216–19
sharks and rays, 402
see also ultraviolet radiation

M
macroalgae, 154–8
categories and functional groups, 154–5
critical survival factors for, 160
ecological roles of, 157–60
research gaps, 183
vulnerability to climate change, 156–8, 160–82, 778
mammals see marine mammals
management responses to climate change, 787–97, 800
 benthic invertebrates, 343
 coastal habitats, 611
 community and industry impacts, 768, 795–7
 coral reefs, 545–7, 736–8
 and ecological resilience, 76–92
 fishes, 382–3
 geomorphological features, 708
 island flora and fauna, 659–60
 macroalgae, 182
 managing for resilience, 77–80, 90–2, 789–97
 see also ecological resilience
 mangroves and tidal wetlands, 259–60
 marine mammals, 510
 marine microbes, 114
 marine reptiles, 489–90
 pelagic ecosystems, 584–6
 plankton, 146
 reef building corals, 296–8
 seagrasses, 226–8
 sharks and rays, 419–20
mangroves, 240–3, 545
critical factors for survival, 245–6
importance to fisheries, 245
mangrove forest fauna, 244–6
predicted effects of climate change, 238–9
research gaps, 260–1
role in GBR, 243–5
threats to resilience, 258–9
vulnerability to climate change, 246–59, 778–9
marine carbon cycle, 100–1
marine mammals, 498–9, 560–1
research gaps, 510
significance of, 498–502
vulnerability to climate change, 502–10, 781, 794
marine microbes, 98–9
 adaptive capacity, 109–10, 113
 effect of terrestrial inputs, 112–13
 fuctional role, 99–105
 research gaps, 114–15
 vulnerability to climate change, 105–14, 777
marine reptiles, 466–72, 560–1
research gaps, 490
vulnerability to climate change, 472–90, 780–1, 792–3
marine turtles, 467–9, 560–1
 nesting options, 642–3, 657
 vulnerability to climate change, 472–89, 792–3
microalgae, 154
microbes see marine microbes
microbial loop, 101, 106–8, 126
migration, 606
migratory birds, 656–7
mining industry, 7–8
 see also industries and communities
molluscs, 314–15, 318
monsoon circulation see Asian monsoon system; atmospheric circulation
monsoonal wind, 5
 see also Asian monsoon system

N
natural resource management organisations, 765–6, 787
nekton, 560–1
nesting options
 birds, 641, 642–3, 655–6
turtles, 642–3, 657
La Niña events see El Niño–Southern Oscillation
El Niño–Southern Oscillation, 19, 20, 24–6, 40, 43–6, 516, 776
 and Coral Sea circulation, 60
 impact on islands, 631–2
 impact on seabirds, 434–43, 452–3
 implications for disease, 108
 observed and projected changes, 43–4
 and sea level trends, 53–6
nitrogen fixation, 159
North Atlantic thermohaline circulation, 44
North Queensland current, 60–2
nursery grounds, 606–7
nutrient cycling, 100–1, 104
impact of water temperature increase, 106–8, 110
role of mangroves, 244
nutrient enrichment
effects on macroalgae, 170–1
effects on pelagic organisms, 572–3, 582–3
effects on plankton, 129–32, 138–45
nutrients, and seagrass survival, 199–200, 212

O
ocean acidification see ocean chemistry changes
ocean chemistry, 2, 720–2
observed and projected changes, 41–2, 45–6, 776
ocean chemistry changes
effects on species and habitats
benthic invertebrates, 321–2, 323, 327–8, 332, 334
coral reefs, 525–7, 689
corals, 284–5
fishes, 362–3
geomorphology, 683
island flora and fauna, 636–8
macroalgae, 164–6
marine microbes, 110–11
marine reptiles, 483
pelagic organisms, 571–2, 581–2
plankton, 128, 135–6, 146
seagrasses, 219–21
sharks and rays, 399, 402
ocean circulation, 60–2
see also currents
ocean circulation changes
effects on species and habitats
benthic invertebrates, 319–20, 322, 325, 332–3
coral reefs, 525–7, 689
corals, 284–5
fishes, 362–3
islands, 631–2
macroalgae, 160–2
mangroves, 246–7
marine reptiles, 472
seagrasses, 221–2
oceanic currents see currents
oceanography, 5, 52–71, 558
measurement of oceanographic processes, 53, 71
and pelagic organisms, 568–9, 577–8
oceans
heat capacity, 34, 52, 71 see also sea surface temperature
thermal stratification, 56–9
thermocline, 55–6, 59, 66, 70–1
oysters, 108
ozone layer, 44, 129

P
Pacific Decadal Oscillation, 26–7, 44, 45, 55, 435–6
palaeoecology of coral reefs, 718–38
pelagic ecosystems, 556–73
linkages, 583–4
management responses to climate change, 584–6
vulnerability to climate change, 573–84, 782
pelagic environments, 545, 558, 782
pelagic organisms, 558–61
and physical environment, 557–73
significance of, 562–6
pH see ocean chemistry
phytoplankton, 123–7, 558–9
effects of light and ultraviolet radiation, 111, 137–8, 142–5
growth rates, 141
and nutrient enrichment, 130–2, 138–45
and ocean chemistry, 128, 135–6, 142–5
and water temperature changes, 133–5, 142–5
plankton, 122–5, 558–60
adaptation, 140–1
factors affecting abundance and growth, 127–32, 141–5
as food, 126–7, 563
and other ecosystem components, 140–1
production and energy flow, 126
research gaps, 146–7
role of, 125
vulnerability to climate change, 132–45, 777–8
predators, in pelagic ecosystems, 563–4
primary production, 101
defined, 158
role of by macroalgae, 158–9
role of plankton, 125–6
protected species, 795

R
rainfall, 22–3, 70
extreme rainfall events, 38, 45–6, 288–9
observed and projected changes, 36–9, 45–6
regional projections, 19
see also climate
rainfall changes
effects on species and habitats
benthic invertebrates, 329, 332
coral reefs, 530–2, 689
corals, 287–9
fishes, 365–6
geomorphology, 682–3, 695, 698
island flora and fauna, 645–50
macroalgae, 170–2
mangroves, 257–8
marine reptiles, 486–7
microbial communities, 112–13
pelagic organisms, 582–3
plankton, 130–2
seabirds, 451–2
seagrasses, 210–15
sharks and rays, 399, 401–2
rays, 394–421
conservation status, 399, 417
ecology, significance and value, 395–8, 415–16
functional groups, 403
impacts of climate change, 398–404
research gaps, 419–20
vulnerability to climate change, 398–420
recreation, 6–7, 91, 565–7
see also tourism
recreational fishing, 565–7, 763, 797
see also commercial fishing
reefs see coral reefs
refugia, 85–6, 792
reptiles see marine reptiles; terrestrial reptiles
research
benthic invertebrates, 343–4
coastal habitats, 611–12
coral reefs, 547–8, 738
corals, 299
fishes, 382–3
gemorphology, 708–9
island flora and fauna, 661
macroalgae, 183
mangroves, 260–1
marine mammals, 510
marine microbes, 114–15
marine reptiles, 490
plankton, 146–7
seabirds, 403
seagrasses, 228
sharks and rays, 419–20
social dimensions of climate change, 769
resilience, defined, 748
see also ecological resilience
risk see vulnerability assessment
river flow, 19, 23
observed and projected changes, 36–9, 45–6
river plumes, 70
effects on species and habitats
benthic invertebrates, 329, 332, 335
coral reefs, 530–2
corals, 287–9
fishes, 365–6
island flora and fauna, 645–50
macroalgae, 170–2
marine reptiles, 486–7
microbial communities, 112–13
pelagic organisms, 572–3
plankton, 130
seagrasses, 210–15
see also freshwater inputs; nutrient enrichment;
terrestrial inputs
runoff see river plumes; terrestrial inputs
salinity, 37–8
and seagrass survival, 200, 211
salt marshes and salt flats, 238–43, 545
effects of climate change, 246–61
fauna and dependencies, 244–6
management responses to climate change, 259–60
mangrove forests see mangroves
research needs, 260–1
vulnerability to climate change, 258–61
sand islands see islands
scenarios see climate scenarios
sea cucumbers see echinoderms
sea level, 722–3
influence of ENSO, 54–6
observed and projected changes, 41, 45–7, 53–6, 98
sea level rise, 44–6, 53–6, 776
effects on species and habitats
benthic invertebrates, 321–2, 324, 328, 331, 335
coral reefs, 684–8
corals, 286–7
fishes, 364–5
gemorphology, 679–80, 689–92, 695, 698, 703
island flora and fauna, 638–43
macroalgae, 167–8
mangroves, 248–56, 258, 259–61
marine reptiles, 484–5
microbial communities, 112
pelagic organisms, 570, 578–9
seabirds, 451–2
seagrasses, 204–8
sharks and rays, 401
research and information gaps, 260–1
sea snakes, 470–1, 560–1
vulnerability to climate change, 472–89
sea stars see echinoderms
sea surface temperature, 2, 22, 24–5, 56–9, 722–3
effects on species and habitats
coral reefs, 517–23, 688
gemorphology, 680
island flora and fauna, 636
macroalgae, 162–3
pelagic organisms, 570–1, 579–81
plankton, 133–5
seagrasses, 201–4
observed and projected changes, 34–6, 45–6, 98, 133, 776
and tropical cyclone destructiveness, 287
see also water temperature
sea urchins see echinoderms
seabirds, 428–34
of GBR islands, 627–8, 655–6
research gaps, 457
vulnerability to climate change, 434–57, 655–6, 780, 793
seagrasses, 194–9
 critical factors for survival, 199–200
 habitats, 196–9, 223–5, 545
 research gaps, 228
 vulnerability to climate change, 201–28, 778, 794
seawater acidification see ocean chemistry
seaweeds see macroalgae
sediment deposition, 212–15
 see also river plumes
sensitivity to climate change drivers see vulnerability assessment
sharks, 394–421, 560–1
 conservation status, 399, 417
 ecology, significance and value, 395–8, 415–16
 functional groups, 403
 impacts of climate change, 398–404
 research gaps, 419–20
 vulnerability to climate change, 398–420
shorebirds, of GBR islands, 628–9, 655–6
social and economic benefits of GBR, 6–8, 272, 750–2
social and economic resilience, 747–8, 795–7
social impacts of climate change, 746–69
soft-bottom communities, 310–12
 see also benthic invertebrates
soft corals, 126–7
South Equatorial Current, 5, 60–2, 131
Southern Oscillation see El Niño-Southern Oscillation
species conservation, 90, 342, 792, 795
 see also ecological resilience; extinction risk
sponge disease, 103–4, 106
sponges, 102–3, 312–13, 318
squid, 560–1
storms (tropical cyclones) see tropical cyclones
stratospheric ozone layer see ozone layer
substrate availability, and macroalgae, 172–3
summer monsoon circulation see atmospheric circulation
sunlight see light availability; ultraviolet radiation
surface climate (current surface climate), 20–7
 projected changes, 45–6
symbiosis, 102–3, 108, 109–10

terrestrial invertebrates, 628, 634
 see also island flora and fauna
terrestrial reptiles, 626
thermal stress, 86–7
thermocline, 55–6, 59, 66, 70–1
tidal wetlands, 238–61
 management responses to climate change, 259–60
 research needs, 260–1
 vulnerability to climate change, 246–60
tides, 5, 68–9
tourism, 6–7, 91, 272, 498, 567, 750–2, 763–4, 785–6, 796–7
tropical cyclones, 23, 26, 40, 112, 130, 287–8, 573
 destructiveness, 287
 effects on species and habitats
 benthic invertebrates, 320–1, 329, 332, 335
 coral reefs, 528–30, 688–9
 corals, 287–9
 fishes, 365
 geomorphology, 681–2, 694, 701, 704
 island flora and fauna, 643–5
 macroalgae, 168–70
 mangroves, 257
 marine reptiles, 486
 pelagic organisms, 572–3, 582–3
 seabirds, 449–51
 seagrasses, 208–10
 sharks and rays, 401
 observed and projected changes, 39–40, 45–6
turf algae
 impacts of changes in specific environmental conditions, 160–73
 vulnerability to climate change (summary), 173–8
 see also macroalgae
turtles see marine turtles

U
ultraviolet radiation
 effects on species and habitats, 44
 coral reefs, 523–5
 corals, 279–84
 fishes, 364
 island flora and fauna, 638
 macroalgae, 166–7
 and mangroves, 248
 marine microbes, 111
 marine reptiles, 483–4
 pelagic organisms, 572, 582
 plankton, 111, 128–9, 137–8, 141
 seagrasses, 216–19

T
 temperature
 regional projections, 19–20
 see also air temperature; sea surface temperature; water temperature
terrestrial flora, 624–6
 see also island flora and fauna
terrestrial inputs
 effects on species and habitats
 macroalgae, 170–2
 microbial communities, 112–13
 plankton, 130–2
 see also river plumes
uncertainty
 dealing with uncertainty, 11–12
 and future climate change, 17–19
upright algae
 impacts of changes in specific environmental
 conditions, 160–73
 vulnerability to climate change (summary), 178–80
 see also macroalgae
upwelling, 70–1, 130–1, 572–3

v
vertebrate fauna, 634–5
 see also island flora and fauna
viruses, marine see marine microbes
vulnerability assessment, 2, 10–12, 774–87
 benthic invertebrates, 319–43, 779
 coastal and estuarine habitats, 597–611, 782, 794–5
 of communities and industries, 752–6, 784–7
 coral reefs, 534–45, 684–9, 706, 720–36, 781–2
 corals, 274–98, 779
 fishes, 360–6, 380–2, 779–80, 793–4
 geomorphological features, 679–708
 island flora and fauna, 630–50, 653–60
 islands, 689–98, 706–7, 782, 794–5
 macroalgae, 156–8, 160–82, 778
 mangroves, 246–59, 778–9
 marine mammals, 502–10, 781, 794
 marine microbes, 114, 777
 marine reptiles, 472–90, 780–1, 792–3
 marine turtles, 472–89, 792–3
 pelagic ecosystems, 573–84, 782
 plankton, 132–45, 777–8
 seabirds, 434–57, 655–6, 780, 793
 seagrasses, 201–28, 778, 794
 sharks and rays, 404–15, 780
vulnerability, defined, 747

w
water column mixing, 56–9
water movement see currents
water quality, 86, 161, 273, 292, 536, 539, 599, 608
 management approaches, 9, 90–1, 146, 298, 419, 546, 708, 788, 789–91
 research gaps, 548
 role of mangroves, 240, 243
 role of molluscs, 318
 see also light availability; river plumes
water temperature
 influence on plankton, 128
 observed and projected changes, 776
 see also heat content of oceans; sea surface temperature
water temperature changes
 effects on species and habitats
 benthic invertebrates, 320, 322–3, 325–7, 330–1, 333–4
 corals, 274–9
 fishes, 360–2
 island flora and fauna, 632–6
 macroalgae, 162–3
 mangroves, 247
 marine microbes, 105–10
 marine reptiles, 472–83
 pelagic organisms, 570–1
 plankton, 133–5
 seagrasses, 200, 201–4
 sharks and rays, 399, 400–1, 403–4
 waterbirds, 628
 weather, 16, 776
 extreme events, 38, 45–6, 47
 see also climate; tropical cyclones
wetlands
 freshwater, 628, 635–6, 654
 tidal, 238–61
whales, 498–510, 560–1
World Heritage Area, 8–9, 799

z
zooplankton, 124–7, 559–60
 effects of changes in water temperature, 133–5, 142–5
 effects of light and UV radiation, 128–9, 137–8, 142–5
 growth rates, 141
 and nutrient enrichment, 130–2, 138–45
 and ocean chemistry, 128, 135–6, 142–5