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Chapter 22
Using the past to understand the future:  

palaeoecology of coral reefs

John M Pandolfi and Benjamin J Greenstein

Perhaps the earth is teaching us when everything 
seems dead and then everything is alive.

Pablo Neruda

Image courtesy of John Pandolfi, University of Queensland
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22.1 Introduction 
Present anthropogenically-induced climate change is now well substantiated91. The effects of climate 

change on the marine biosphere are the subject of great concern64,133,63 but we simply do not have 
enough long-term ecological data to predict potential changes in the geographic distribution and 
composition of marine communities. Hence, long-term time-series data on the past response of 
marine ecosystems to climate change have become increasingly relevant. Coral reefs provide a legacy 
of their existence because they accumulate vast thicknesses of biogenic sediments, so it is possible 
to acquire time-series ecological data in the form of variations in reef coral community structure 
during past episodes of environmental change. It is perhaps fortuitous that many of the proxies that 
we use to understand past climate on earth can be found in the major architectural components of 
reefs, the scleractinian corals. However, most emphasis has been placed on using corals as ancient 
thermometers and much less on their ecological response to global climate change.

22.1.1 Defining history 

There have been many attempts to place the present and projected global climate change into an 
historical context (eg Crowley32). However, most of these attempts are undertaken by palaeoclimatologists 
interested in the comparisons of rates and magnitudes of physical change, but not the corresponding 
rates and magnitudes of ecological change. In this contribution we take a close look at the major 
climatic variables most likely to change in the coming century by tracing their history throughout various 
intervals of geological time. We conveniently divide these intervals into ‘deep time’ and the Quaternary 
(Pleistocene and Holocene; see Figure 22.1) so that lessons can be learned from multiple time scales. 
After we discuss these physical changes, we summarise the biological response of tropical marine 
ecosystems, with special attention to coral reefs. We then present a series of examples of the response of 
coral reefs to past global climate change and use these results to provide guidance as to likely scenarios 
for the future of the Great Barrier Reef (GBR) under predicted climate change.

This contribution covers a large range of spatial and temporal scales. Throughout, it is critically 
important to consider the scale-dependence of our discussion. The derivation of principles and 
analogies from geological timescales and perspectives is often not directly applicable to studies 
and events occurring at ecological timescales. For example, current concern over the future of the 
GBR is placed in the context of upcoming decades or centuries. The geological record can be used 
to examine responses of reef ecosystems to both prolonged and rapid perturbations in the past. 
However, the resolution to determine how reefs ‘looked’ during intervals (decades to centuries) over 
which rapid perturbations occurred is only sporadically encountered (eg Pandolfi et al.102). 

On the other hand, the unfolding of natural ecological processes often occurs over time spans that 
are far greater than those directly observable by living scientists. This may leave critical challenges to 
managers of marine ecosystems over the short time scales inherent in human generations, or even 
shorter political cycles. The geological record of coral reefs is the exclusive (and hence, indispensable) 
source of data that can inform managers about processes operating over longer time intervals. In this 
chapter we attempt to summarise the relationship between past climate and the ecological history 

of reefs. We find that, in the absence of human impacts, reefs either persisted in the face of natural 

changes in climate throughout their long geological history, despite large environmental variability, 

or that any deleterious ecological effects were superseded by replenished ecosystems.
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Figure 22.1 Geological time scalea showing the age of the Phanerozoic (deep time) and the Quaternary

a US Geological Survey: http://www2.nature.nps.gov/geology/usgsnps/gtime/gtime1.html 
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22.2 Vulnerability of coral reefs to climate change

22.2.1 Exposure

22.2.1.1 Phanerozoic rates and magnitudes of environmental change

Physical controls on reef building and decline, over geologic timescales, include variations in seawater 

chemistry and cyclic changes (at varying time scales) in sea level, sea surface temperature and global 

levels of atmospheric CO2. These factors are necessarily interrelated. In the following sections, we 

outline the nature and distribution of these factors over the last 540 million years – the Phanerozoic 

Eon of geologic time (Figure 22.1).

Seawater chemistry
The mineralogy of inorganically precipitated calcium carbonate varied between calcite and aragonite 

over geologic time114, calcite is the more stable of the two and has typically been better preserved. 

The Phanerozoic Eon can be divided into three intervals of ‘aragonite seas’ and two intervals of ‘calcite 

seas’ based on which mineral phase was predominant (Figure 22.2). ‘Aragonite I,’ ‘Calcite I’ and a 

portion of ‘Aragonite II’ are encompassed by Palaeozoic time (an interval of approximately 300 million 

years). ‘Calcite II’ occurs from Jurassic–Oligocene time (170 million years), followed by ‘Aragonite III’ 

which began approximately 30 million years ago and continues today. Wilkinson and Algeo139 and 

Hardie56 suggested that each of these intervals is related to secular (extremely long-term) shifts in 

the magnesium/calcium (Mg/Ca) ratio of sea water imparted by changes in spreading rates along 

mid-ocean ridges. Stanley and Hardie125 expanded this work by relating secular oscillations in the 

carbonate mineralogy of carbonate-secreting taxa to the intervals of calcite or aragonite precipitation 

described by Sandberg114. Their work was, in turn, corroborated by Dickson34 who used the mole 

percent of Mg-rich calcite in skeletal elements of fossil echinoderms as proxy for Mg/Ca ratios in sea 

water during Aragonite I, II and Calcite I, II.

Values for surface ocean pH and alkalinity have been established for the last 60 million years103,104 

(Figure 22.3). From a low value of 7.4 at the beginning of Paleogene time (Greenhouse II), sea surface 

pH increased to a Miocene high of 8.3 before declining to its current level of 8.1 (note no data are 

available for the Late Eocene and Oligocene epochs). In the context of this time scale, the fact that 

sea surface pH declined from 8.2 to 8.1 in only the last 40 years is particularly sobering. 

Today there is much concern over the degree to which ocean acidification associated with increased 

carbon dioxide (CO2) will negatively impact biomineralisation in the sea38. The fossil record is 

equivocal on this issue. For example, Palaeozoic reefs were dominated by calcitic corals so this part of 

the geological record is mute on the topic of the effects of ocean acidification on modern aragonitic 

corals. Late Cretaceous reefs were dominated by aragonitic corals until Mg/Ca ratios got low enough 

to favour the rudistid bivalves. The ‘Palaeocene lag’ in the recovery of reef ecosystems from the 

end-Cretaceous extinction is attributed to ‘calcite sea’ geochemistry125. However, pH was lower in 

the Palaeocene as well (Figure 22.3). Following the Palaeocene, coral reefs diversified as ocean pH 

increased and atmospheric CO2 decreased – see discussions below. 



P
art III: H

ab
itats

721Climate Change and the Great Barrier Reef: A Vulnerability Assessment

C
h

ap
ter 2

2
:  U

sin
g

 th
e p

ast to
 u

n
d

erstan
d

 th
e fu

tu
re: p

alaeo
eco

lo
g

y o
f co

ral reefs

Fi
g
ur

e 
2

2
.2

 S
ec

ul
ar

 t
re

nd
s 

in
 a

 v
ar

ie
ty

 o
f 

ph
ys

ic
al

, c
he

m
ic

al
 a

nd
 b

io
lo

gi
ca

l a
tt

ri
bu

te
s 

of
 t

he
 E

ar
th

 s
ys

te
m

 o
ve

r 
th

e 
la

st
 6

00
 m

ill
io

n 
ye

ar
s,

 Y
-a

xi
s 

at
 s

am
e 

sc
al

e 
fo

r 
al

l p
lo

ts
. F

ro
m

 le
ft

 t
o 

ri
gh

t:
 g

en
er

ic
 d

iv
er

si
ty

 o
f 

re
ef

 b
ui

ld
in

g 
co

ra
ls

b ; 
at

m
os

ph
er

ic
 C

O
2 

ex
pr

es
se

d 
as

 n
um

be
r 

of
 t

im
es

 h
ig

he
r 

th
an

 
ap

pr
ox

im
at

e 
pr

es
en

t 
va

lu
e 

of
 3

00
 p

ar
ts

 p
er

 m
ill

io
n 

by
 v

ol
um

e 
(R

C
O

218
);

 t
im

in
g 

of
 f

lu
x 

in
 M

g/
C

a 
co

nc
en

tr
at

io
n 

of
 s

ea
w

at
er

 p
ro

du
ci

ng
 a

ra
go

ni
te

 o
r 

ca
lc

it
e 

se
as

12
5 ; 

gl
ob

al
 m

ar
in

e 
di

ve
rs

it
y 

(f
iv

e 
la

rg
es

t 
m

as
s 

ex
ti

nc
ti

on
s 

in
di

ca
te

d 
w

it
h 

cr
os

se
s)

; t
im

in
g 

of
 ic

e 
sh

ee
t 

ad
va

nc
e/

re
tr

ea
t 

du
ri

ng
 ic

eh
ou

se
 a

nd
 

gr
ee

nh
ou

se
 p

ha
se

s;
 g

lo
ba

l s
ea

 le
ve

l, 
hi

st
or

y 
of

 v
ol

ca
ni

c 
ac

ti
vi

ty
 (

bi
ot

ic
 c

ri
se

s,
 c

lim
at

e,
 s

ea
 le

ve
l a

nd
 v

ol
ca

ni
c 

ac
ti

vi
ty

 m
od

ifi
ed

 f
ro

m
 F

is
ch

er
41

) 

b 
Pa

le
ob

io
lo

gy
 D

at
eb

as
e 

(2
00

6)
 T

he
 d

at
a 

w
er

e 
do

w
nl

oa
de

d 
fr

om
 t

he
 P

al
eo

bi
ol

og
y 

D
at

ab
as

e 
on

 2
4 

M
ay

, 
20

06
, 

us
in

g 
th

e 
gr

ou
p

 n
am

e 
‘m

ar
in

e 
in

ve
rt

eb
ra

te
’ a

nd
 t

he
 f

ol
lo

w
in

g 
p

ar
am

et
er

s:
 t

im
e 

in
te

rv
al

s 
= 

G
ra

ds
te

in
 7

: 
St

ag
es

, 
re

gi
on

 =
 G

lo
ba

l, 
p

al
eo

en
vi

ro
nm

en
t 

= 
m

ar
in

e,
 o

rd
er

 =
 T

ab
ul

at
a,

 R
ug

os
a,

 S
cl

er
ac

tin
ia



722 Climate Change and the Great Barrier Reef: A Vulnerability Assessment

Part III: Habitats

Figure 22.3 Secular variation of physical, chemical and biological attributes of the Earth system 
over the last 60 million years; pCO2 and pH values from Pearson and Palmer104; generic diversity of 
scleractinia from the Paleobiology Databasec; sea level data from Miller et al.84

Sea level, sea surface temperature and global CO2 levels
Fischer40,41 outlined a nested set of climate cycles apparent over the last 700 million years. These cycles, 

operating on timescales of 108, 107 and 104/105 years, were correlated with biotic crises observed in 

the fossil record of marine invertebrates. The longest cycle (defined by Fischer40 to occur between 

‘Icehouse’ and ‘Greenhouse’ intervals) was interpreted to be the result of changes in pCO2 caused by 

variation in the Earth’s mantle convection strength (and resulting sea-floor spreading rates). These refer 

to periods in which icesheets dominated the poles – the Icehouse, which we are currently in – and 

times when the poles were free from ice – the Greenhouse. These terms are not to be confused with 

glacial and interglacial periods, which can occur within these cycles. Greenhouse intervals occurred 

during the early-mid Palaeozoic and between Jurassic-Palaeogene time (Figure 22.2). They were 

characterised by high sea level (amplitudes are the subject of some controversy – recent work, eg Miller 

et al.84, suggests that sea level in the Cretaceous was 100 ± 50 metres higher than today), rapid sea-

floor spreading rates, elevated atmospheric CO2 concentrations and elevated sea surface temperatures 

(5 to 9ºC above present during Greenhouse II147,116). In contrast, the Icehouse intervals bracketing 

the warmer periods were times of lower sea level, continental glaciation, lower concentrations of 

atmospheric CO2 and lower temperatures (atmospheric temperatures 8 to 10ºC below present during 

the glacial episodes of the present icehouse phase106). Sea level variations accompanying transitions 

c Paleobiology Datebase (2006) The data were downloaded from the Paleobiology Database on 24 May, 2006, using the 
group name ‘marine invertebrate’ and the following parameters: time intervals = Gradstein 7: Stages, region = Global, 
paleoenvironment = marine, order = Tabulata, Rugosa, Scleractinia
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from Icehouse to Greenhouse intervals were up to 200 metres84. Temperature fluctuations (examined 

as 10 million year or longer averages) in the tropics occurred at far greater magnitudes than have been 

observed today or projected into the future131,120 (Figure 22.4).

In a series of papers, Berner and colleagues16,17,18,20,19 quantified global atmospheric CO2 levels over 

essentially the same time interval described above. Their model allowed only for long-term (again, 10 

million year or longer averages) and hence short-term fluctuations were not delineated. Their results 

corroborated Fischer’s40,41 earlier work. Very high levels (25 times that of today) of CO2 were present 

during early Palaeozoic time (approximately 440 million years ago, during ‘Calcite I’, as defined 

above; Figure 22.2) followed by a large drop (ironically, to approximately modern levels: 306 parts 

per million by volume18) at 360 million years ago, near the end of Devonian time, most likely catalysed 

by the rise of vascular plants and their spread throughout terrestrial ecosystems2,111,35. The resultant 

accelerated uptake of CO2 by weathering of silicate rock as plants with deep root systems evolved was 

complemented by enhanced burial (and hence trapping of CO2) of organic material in sediments. 

By 325 million years ago, the reduction of CO2 was sufficient to plunge the earth into Icehouse II, 

which lasted 145 million years, into mid-Jurassic time. Greenhouse II persisted for approximately 150 

million years, during its zenith in Late Cretaceous time (80 million years ago ), CO2 levels were five to 

six times higher than today18,103. Beginning 33.5 million years ago, in Early Oligocene time, the earth 

began to enter the icehouse state (Icehouse III) that continues today.

Figure 22.4 Tropical sea surface temperature curve throughout the Phanerozoic derived from 
isotopic analyses (lines) and tropical surface palaeotemperature anomalies calculated by an  
energy-balance climate model (filled circles). 10/20 and 10/50 indicate running means at various 
temporal resolutions (eg 10/20 means step 10 million years, window 20 million year averaging) 
from Veizer et al.131

Reprinted by permission from McMillan Publishers Ltd: Nature, Veizer et al.131, copyright 2000
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22.2.1.2 Quaternary rates and magnitudes of climate change 

Milankovitch cycles
High-resolution climate proxies for the Quaternary, particularly the last 800,000 years, are derived 

primarily from deep-sea sediments and ice cores. These proxies indicate that, as the earth entered 

a full glacial period (a continuation of Icehouse III), growth and decay of ice sheets in the northern 

hemisphere were controlled by 104- to 105-year scale climate changes forced by natural cyclic changes 

in several parameters of Earth’s orbit (so-called Milankovitch cyclesd84). Global sea levels underwent 

at least 17 cycles of rise and fall during the last 500,000 years27, with amplitudes of greater than 100 

metres characterising glacial and interglacial stages. Average rates of sea level change between glacial 

and interglacial intervals approached 50 centimetres per century84. 

Variation in atmospheric CO2 and global temperature in response to the waxing and waning of ice 

sheets also are recorded by climate proxies. Famously, the Vostok ice core spans greater than 400,000 

years and records the atmospheric response to four complete glacial-interglacial cycles (Figure 22.5). At 

the onset of each warm interval, CO2 increased by 8 to 10 parts per million by volume per thousand 

years, coincident with temperature increases of between 0.5 to 1.0ºC per thousand years106. During the 

latter half of this interval, rapid and dramatic changes in sea surface temperature have been calculated 

for the Western Mediterranean over the last 250,000 years, where rates of sea surface temperature 

increase have apparently exceeded 1.5ºC per century83. This record has now been extended, first with 

reports from the European Project for Ice Coring in Antarctica (EPICA) group of cycles back to 650 

thousand years ago from a new ice core in Antarctica122, and then to 800,000 still showing Milankovitch 

cycles with temperature and CO2 in lock step variation through the entire interval145.

Figure 22.5 Climate and sea level fluctuations over Late Quaternary time. Sea level data from Miller 
et al.84, CO2 and temperature data from Petit et al.106, temperature (DTI) expressed as changes from 
the present temperature at the inversion (atmospheric) level

d The cycles influence the amount of sun energy received by earth. They include obliquity (changes in the angle of 
earth’s axis of rotation with respect to the sun); eccentricity (changes in the circularity of Earth’s orbit around the sun); 
and precession of the equinoxes (changes in the position of the Earth in its orbit around the sun at the time of the 
equinox). The cycles are 41,000, 100,000, and 23,000 years, respectively.
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Sub-orbital and abrupt climate change
Evidence from the last interglacial (approximately 128 to 118 thousand years ago) indicates substantial 

changes in sea level also occurred over much shorter intervals than could be produced by Milankovitch 

style forcing. For example, field evidence initially published for the Bahamas, indicates two episodes of 

reef building separated by a surface that clearly was exposed to the atmosphere. Dates obtained from 

corals preserved on either side of the exposure surface indicate that the fall and subsequent rise in sea 

level that produced the reef sequences occurred in as little as 1500 years and suggests rates of sea 

level change approaching 70 centimetres per century30,143. Results of additional work in the Seychelles, 

Maldives and Western Australia54,137,138 suggests this also was a global sea level event.

A significant amount of new information has been gathered over the past several years that point to 

a large number of ‘abrupt climate change’ events during the more recent geologic past when most 

living marine communities originated and thrived. Abrupt climate change occurs when ‘the climate 

system is forced to cross some threshold, triggering a transition to a new state at a rate determined 

by the climate system itself and faster than the cause’88. Recent palaeoclimatic studies indicate that 

regional temperature fluctuations of as much as 8 to 16°C occurred repeatedly in as little as a decade 

or less over the past 100 thousand years127,119. One of the best known and studied of these events 

is called the ‘Younger Dryas’ event, so called because a cold-loving plant species’ pollen (Dryas 

octopetala, an arctic-alpine herb) reappeared during this interval. It had an abrupt beginning 12,800 

years ago and an even more abrupt end 11,600 years ago. The intervening interval was characterised 

by cooler than normal temperatures, but the transition out of the cooling period resulted in a 

warming episode of 8°C in a decade.

During the last 10,000 years (Holocene time), rapid changes in climate, also on the scale of between 

8 to 16ºC, occurred repeatedly on decadal time scales119,4. These changes were apparently forced by 

cyclic (1500-year) changes in solar activity/brightness21 and to date have been preserved by climate 

proxies in the northern hemisphere (eg Andresen et al.6 and Hu et al.61). Recently Mueller et al.86 

suggested that similar cycles of solar activity also operated during the last interglacial, 128 to 118 

thousand years ago. 

The best known of these types of short-term climatic cycles are the Dansgaard–Oeschger events and 

Heinrich events. Dansgaard–Oeschger events are a period of slow cooling followed by one of rapid 

warming. They have been detected by rapid shifts in isotopic composition in ice cores. Methane, 

regarded as an index of tropical wetland vegetation, also co-varies with the isotopic shifts. Heinrich 

events appear to be correlated with Dansgaard–Oeschger events and are characterised by the rapid 

break-up of northern hemisphere ice sheets that expand to a critical size, then break up along their 

oceanic margins. These events act as a switch to turn the Atlantic conveyor on and off, causing rapid 

climate changes in the north Atlantic region on the order of 5 to 10°C in a decade or less.

22.2.1.3 Summary 

The long-term pattern of climate change preserved in the geologic record indicates substantial 

departures from that of human experience, especially magnitudes of temperature and CO2 during 

deeper intervals of geological time. For example, temperature was up to 6°C higher in tropical 

Phanerozoic ecosystems than present day (Figure 22.4), similarly, CO2 levels were up to 20 times 
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higher. Therefore, the magnitude of projected climate change is within the past history of metazoan, 

and even reef life, but the rate of change is unknown. This is due to the fact that the patterns in deeper 

time are not resolvable to scales relevant for present day changes because they are binned by 10 

million year intervals, thus we don’t yet know what the rate of change has been in deeper time when 

magnitudes exceeded present day and projected values. 

Perhaps more relevant for modern managers are more recent patterns in temperature and CO2 

observed during the Quaternary, where both magnitudes and rates of change can be observed. Here 

we see that the magnitude and rate of temperature change are both greater in the Quaternary than 

projected for the next century by the Intergovernmental Panel on Climate Change (IPCC) (Table 

22.1). Importantly, the highest rates of temperature increase during sub-orbital abrupt climate 

change events have not elevated Quaternary temperatures beyond those seen today. Projected 

temperature increases over the next century could elevate temperature near highest levels observed 

for the Quaternary. However, the rate of change in temperature will still be below the highest rates 

of change seen in the atmosphere during the initiation of each interglacial period within the last 

400,000 years106. In contrast, present day and projected magnitudes and rates of CO2 rise now far 

exceed Quaternary levels (Table 22.1). 

Table 22.1 Comparison of rates of change in temperature, CO2 and sea level estimated for various 
intervals in the geologic past and those predicted for the next century. Where: kyr represents 
thousands of years, ppmv is parts per million by volume and m/century is metres per century

Geologic 
Interval

Age (kyr) Temperature  
(°C/century)

CO2 (ppmv/
century)

Sea level  
(m/century)

Reference

Pleistocene-
Holocene

11.60 to 
10.10

1.0 2.0 0.8 Severinghaus  
et al.119, Stocker127, 
Miller et al.84

Pleistocene-
Holocene

11.64 to 
11.63

50 to 100* N/A N/A Severinghaus  
et al.119

Quaternary 156.35 to 
129.70

0.042 0.34 0.52 Petit et al.106,  
Miller et al.84

Quaternary 333.60 to 
322.16

0.12 3.4 0.56 Petit et al.106,  
Miller et al.84

Palaeoecene-
Eocene

55,000 to 
54,925

0.007 0.2 0.06 Zachos et al.147, 
Miller et al.84

Next Century N/A 1.2 to 5.8 111 to 732 0.07 to 0.86 IPCC64

* Represents estimate for a ‘decadal step’ associated with the end of the Younger Dryas Interval
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22.2.2 Sensitivity

22.2.2.1 Phanerozoic reef response 

Reef systems have a geologic history extending back 2.5 thousand million years or 2.5 Ga. Then, 

microbial stromatolites built wave-resistant structures soon after tectonic processes produced 

widespread shallow marine shelf environments89. Reef systems comprising corals extend to at least 

450 million years ago58 and most likely earlier115. Over geological timescales since that time, reef 

coral communities have been durable in the face of global biotic crises, reappearing after each of the 

‘big five’ mass extinction events110 and numerous smaller mass extinction events. However, recovery 

intervals ranged from four million years (following the end-Triassic event132,136 to over 100 million years 

(following the collapse of the mid-Palaeozoic reef ecosystems beginning near the end of Devonian 

time89). Although reef crises are correlated with mass extinction events, Flügel and Kiessling44 have 

demonstrated that the magnitude of mass extinctions and reef crises (the former measured as declines 

in biodiversity, the latter as declines in carbonate production) are rarely equivalent, suggesting that 

they are not always causally related. 

Early to mid-Palaeozoic coral reef ecosystems fall into ‘Calcite I’ of Sandberg114, and are dominated by 

calcitic rugose, tabulate and heliolitid corals (as well as calcitic stromatoporoid sponges). The collapse 

of the Devonian coral reef ecosystem resulted in a loss of framework-building taxa and was followed 

by a transition to ‘Aragonite II’ in mid-Mississippian time114. Although coral components of reef 

ecosystems are unimportant during the latter half of the Palaeozoic, algae secreting high-magnesium 

calcite skeletons and aragonitic phylloid algae became dominant constituents of late-Palaeozoic reef 

ecosystems146,43.

‘Aragonite II’ persisted through the Permo–Triassic extinction event; when reef building resumed in 

mid-Triassic time, a community of high-magnesium and aragonitic organisms (notably sponges and 

red algae) were responsible45,118. Scleractinian or ‘stony’ corals, which build aragonite skeletons, join 

these communities in Late Triassic time126,15 and, following the end-Triassic extinction, dominate global 

reef systems until the mid-Cretaceous shift from aragonite to calcite seas124,76. By Late Cretaceous time, 

calcitic rudistid bivalves began to supplant scleractinian corals as dominant reef builders117,69. Stanley 

and Hardie125 suggest that the replacement of scleractinians by rudists was a consequence of the 

decline of aragonitic corals resulting from a pronounced decrease in the magnesium/calcium ratio of 

sea water by Late Cretaceous time.

The timing of recovery of the coral reef ecosystem from the terminal Cretaceous extinction event 

is the subject of some controversy. Many researchers have suggested that reefs did not attain 

Cretaceous levels of geographic extent and complexity until Oligocene-Miocene time: the beginning 

of ‘Aragonite III’ (Figure 22.2) (eg Frost48, James68, Sheehan121, Fagerstrom37, Bryan24, Hallock55, Stanley 

and Hardie125). More recently however, Baceta et al.8 suggest that this impression may largely be 

the result of preservation bias, and present an analysis of an extensive early Palaeogene section to 

demonstrate a rapid (two million years) recovery of coral-dominated reef systems. Moreover, Kiessling 

and Baron-Szabo73 show that extinction rates of scleractinian corals across the Cretaceous/Palaeogene 

boundary were only moderate in comparison with other invertebrates.
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What is clear is that luxuriant and widespread reef growth is observed during the Oligocene Epoch 

of the Palaeogene Period47,48, even after global climates had cooled substantially144. This interval 

coincides with the onset of ‘Aragonite III’ and the establishment of Mg/Ca ratios sufficiently high to 
allow aragonitic reefs to flourish once again.

Reefs tend to disappear significantly earlier than other taxa at terminal extinction events. For example, 
Cretaceous reefs vanished 0.7 to 1.5 million years before the end-Cretaceous extinction70. This general 
pattern holds also for the reduction and collapse of early and middle Palaeozoic reefs, which generally 
occurred 0.5 to 1.0 million years earlier than the accepted extinction boundaries for Early Cambrian, 
Late Ordovician and Late Devonian events31. This suggests that, regardless of the cause of extinction, 
reef ecosystems might be more sensitive indicators of environmental perturbation than are other taxa. 

Kiessling71 presented a synthesis of the palaeolatitudinal distribution of 2910 Phanerozoic (pre-
Quaternary) reef (corals and other important calcified constituents) sites compiled from the literature 
and compared it to a variety of palaeoclimatic curves that included temperature and atmospheric 
CO2

46,16,131. Neither the total latitudinal range of reefs nor the width of the tropical reef zone was 
significantly correlated with palaeoclimate inferred from the subsidiary data71. Relevant for living coral 
reefs, Kiessling71 observed that fluctuations in the width of the tropical reef zone were in phase with 
climatic variations only during Cenozoic time. 

The influence of seawater chemistry on skeletal mineralogy appears to be particularly strong for 
morphologically simple taxa that exert relatively weak control over their own calcification – including 
reef-building corals. Hence, the Mg/Ca ratio and saturation state of carbonate in sea water have 
been first-order controls over the success of individual reef-building taxa, resulting in a remarkable 
correspondence between their mineralogy and that of inorganic carbonates over geologic time. 
Ries et al.112 provide experimental evidence that changes in seawater chemistry may result in the 
precipitation of biogenic calcite in scleractinian corals that exclusively precipitate aragonite skeletons. 
Modern corals grown in aquaria full of ‘Cretaceous’ seawater with reduced Mg/Ca ratios compared 
with present day also grew more slowly. Ries et al.112 relate the mid-Cretaceous decline and Oligocene 
resurgence of corals as reef builders to the variation in seawater Mg/Ca ratios. Future experimental 
work on changing seawater chemistry and its effects on coral growth over longer time intervals will be 
a welcome addition to understanding the effects of climate change and ocean acidification on coral 
reefs. Fine and Tchernov39 showed that scleractinian corals grown in experimental acidified conditions 
lost their skeletons, but were able to sustain basic life functions, including reproductive ability, in a sea 
anemone-like form. They resumed skeleton-building when reintroduced to normal marine conditions. 
They concluded that ‘physiological refugia’ allow corals to alternate between non-fossilising soft body 
forms and fossilising skeletal forms in response to changes in ocean chemistry.

In summary, coral-dominated reef systems recovered after past climatic instability imparted as the Earth 
passed between one stable climatic state and the other. It is clear that the acme of reef development, 

both in geographic extent and coral diversity (Figure 22.2), occurred during past Greenhouse intervals. 

Prior to the mid-Palaeozoic (Late Devonian) collapse of the reef system, equatorial reef and inter-reef 

carbonate platforms covered an estimated 10 times the areal extent witnessed today31. In contrast, 

the rise of the modern reef system beginning in mid-Palaeogene time occurred in tandem with falling 

levels of atmospheric CO2, increasing Mg/Ca, increasing alkalinity of the world’s oceans and global 

cooling (Figure 22.3). Hence, aragonite-secreting corals, living in a chemical environment that fosters 
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precipitation of aragonite, build reefs today. This combination of climatic and geochemical factors 

was not present during intervals in the geological past that witnessed widespread reef development. 

Therefore, it would be imprudent to cite widespread reef development during past Greenhouse 

intervals as evidence that the modern reef system will likely benefit from climate change.

22.2.2.2 Quaternary reef response

The Quaternary fossil record of reef coral communities is an ideal database for assessing the 
vulnerability of the modern reef system to climate change. First, reef coral communities preserved 
in Quaternary strata are taxonomically congruent with modern reef coral communities65,92. Second, 
Quaternary reef coral communities flourished during an interval of rapid and dramatic climate change 
for which highly precise climate data are available (Figure 22.5). Third, during the last interglacial, 
sea level was two to six metres higher29, with consequent exposure of a two to six metre terrace 
throughout the tropics that preserves coral reefs. Finally, Quaternary fossil reef communities are 
remarkably well preserved50 allowing for a great number of coral taxa to be identified with a degree 
of certainty that compares closely with modern taxa95,96,99,97.

Recent studies have examined reef coral community dynamics over geologic time scales (Late 
Pleistocene and Holocene time) and extended spatial scales (10 to 1000’s km) and applied the 
results to further our understanding of processes affecting the community structure of modern coral 
reefs (reviewed in Pandolfi94 and Pandolfi and Jackson98). For coral reefs, palaeoecology provides a 
unique tool for placing perturbations affecting modern reefs into a temporal context that exceeds 
the scope of traditional ecological studies93,63,100. An additional body of recent work has compared 
the community structure of Pleistocene reef corals to that of modern reef coral communities to 
assess whether a precedent exists for the ongoing collapse of modern reef systems7,53 as well as the 
magnitude66,67 and mechanism100 of the collapse. On a global scale, coral species underwent dramatic 
changes in distribution and abundance during Quaternary glacial-interglacial cycles that caused sea 
level to repeatedly flood and drain from continental shelves and oceanic islands108. 

The higher resolution provided by the Quaternary (the last 2.6 million years) fossil record of coral 
reefs provides an opportunity to dissect the broad patterns of response observed over an eon of 
geologic time. Moreover, modern coral communities are derived largely from species that survived 
biotic turnover in Plio-Pleistocene time132,25. Hence, a review of the response of these communities to 
the rapid and dramatic fluctuations in temperature, sea level, and atmospheric CO2 that characterise 
the Late Quaternary is especially appropriate for an assessment of the vulnerability of the modern reef 
system to climate change.

The Great Barrier Reef
The history of the Great Barrier Reef (GBR) spans multiple episodes of global environmental change, 
yet it is a relatively ‘young’ geological structure that did not respond to favourable environmental 
conditions early on. In fact, the central Queensland continental shelf has enjoyed warm tropical 
waters that could well have supported coral reef growth for the past 15 million years33. However, 
it is now generally recognised that the initiation of the GBR did not occur until approximately 600 
thousand years ago, and the GBR reefs as we know them probably didn’t occur until around 365 to 

452 thousand years ago134. This is coincident with Marine Isotope Stage 11, perhaps the warmest 

interglacial of the past 450 thousand years60, and one with climatic conditions most similar to those 
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we are now experiencing77. Larcombe and Carter75 believe that the ‘switching-on’ of the GBR was not 

only related to the ‘mid-Pleistocene transition’ from 41 to 100 thousand year-long climatic cycles14, 

but also to the development during Marine Isotope Stage 11 of a marked high stand that enabled 

sustenance of both a cyclone corridor and a reef tract along a relatively wide and deeper water 

continental shelf.

Webster and Davies134 showed remarkable consistency in community composition throughout many 

intervals of Pleistocene reef development on the GBR at Milankovitch time scales. Recent cores drilled 

through Ribbon Reef 5 have shown that the GBR has been able to re-establish itself repeatedly despite 

major environmental fluctuations in sea level, temperature and CO2 over the past several hundred 

thousand years134. Moreover, Webster and Davies134 showed that the reefs have maintained a similar 

coral and algal species composition during their repeated formation. Species abundance data were 

derived from 55 coral species from 20 genera and coralline algal associations were derived from an 

analysis by Braga and Aguirre23.

Growth of the GBR’s fringing and nearshore reefs during the past 10 thousand years (the Holocene) 

has been upon Pleistocene topographic highs123. Holocene fringing reef growth on the GBR varies 

naturally through time and appears to be episodic, responding closely to sea level and climate 

change123. The most significant period of active reef growth occurred between 7500 and 5500 

years before present as the post-glacial marine transgression (sea level rise) progressed. Smithers 

et al.123 attribute the turn-off of these reefs at the end of this period to the exhaustion of available 

accommodation space (the water depth of the shallowest growing reef) over suitable substrates, 

stresses associated with sea level stabilisation and slight fall near the end of this time, and climate 

changes associated with changes in the intensity and frequency of El Niño-Southern Oscillation 

conditions. They also noted other periods of moribundity since the mid-Holocene that are related 

to the filling of accommodation space, reduced flushing since the optimal Holocene high-energy 

window (7500 to 5500 years before present) and reduced calcification and increased disturbance 

associated with climate changes. These moribund reefs were characterised by healthy but non reef-

building coral communities. The authors note that many living fringing nearshore coral reefs are built 

upon reef structures that were constructed in the distant past. The main point from these findings 

is that interruptions in reef growth, even climatically induced, are part and parcel of the Holocene 

nearshore record, but the living biophysical structure of the coral reef remained in the face of episodic 

moribundity, much of which can be correlated with climatic changes. 

Indo-Pacific coral reefs
Like the GBR, Indo-Pacific reefs have flourished throughout several Milankovitch cycles during the 

past several hundred thousand years. For example in Papua New Guinea, vibrant interglacial reefs 

preserved in uplifted terraces along the northern coastline of the Huon Peninsula preserve fossil 

reefs over at least the past 340 thousand years28. These Pleistocene reef coral assemblages show 

pronounced constancy in taxonomic composition and species diversity between 125 and 30 thousand 

years92. Differences in reef coral community composition during successive high stands of sea level 

were greater among sites of the same age than among reefs of different ages, even though global 

changes in sea level, atmospheric CO2 concentration, tropical benthic habitat area and temperature 

varied at each high sea level stand93. Thus, local environmental variation associated with runoff from 
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the land had greater influence on reef coral community composition than variation in global climate 

and sea level. There is also evidence that ecologically equivalent reefs were built successively during 

subsequent glacial intervals (sea level low stands) in Papua New Guinea135.

Western Australia
Present global climate change is resulting in noticeable range expansions of living corals82,130,109. Recent 

work51,52 in coastal Western Australia has provided preliminary data on how such range movements 

might affect the long-term ecological dynamics of coral reef habitats. Well-preserved exposures of Late 

Pleistocene coral reefs are accessible at several localities over a distance of approximately 12 degrees 

of latitude that today encompasses the boundary between two biogeographic provinces (Figure 

22.6). Comparison of reef coral community composition between adjacent modern and fossil reefs 

along this environmental gradient revealed that coral taxa expanded their latitudinal ranges during 

Late Pleistocene time compared to today. The two primary consequences of the range expansions 

were: i) a reduction of the latitudinal gradient in community composition relative to modern reefs 

(Figure 22.7), and ii) a resultant lower coral diversity within the latitudinal range.

Figure 22.6 Modern and Pleistocene reef localities from Western Australia compared by Greenstein and 
Pandolfi51,52. Modern localities in italics, except for the Houtman-Abrolhos and Rottnest Islands, which 
expose both modern and fossil reefs. Additional fossil localities include Cape Range, Lake Macleod-Cape 
Cuvier (L. M. – C. C.) and Port Denison. Province designations after Wilson and Gillett142
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Figure 22.7 Results of two-dimensional non-metric multidimensional scaling of Bray-Curtis 
dissimilarity values calculated from presence-absence data obtained from modern and Pleistocene 
reef coral assemblages of Western Australia. A) Modern reefs show a clear distinction, along 
Dimension 1, between the high-diversity northern reefs of Ningaloo and lower diversity southern reefs 
of Rottnest Island. A significant (R2=0.81; p < 0.0001) correlation exists between Dimension 1 and 
latitude. Stress for the analysis was < 0.001; B) Pleistocene reef assemblages exhibit a significant, 
though not as strong, (R2 = 0.66; p < 0.01) correlation between Dimension 1 and latitude suggesting 
that the past distinction of reef coral communities between Cape Range and Rottnest Island was 
apparently less developed than it is today. Stress for the analysis was 0.09
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A major implication of the patterns observed in Western Australia for the GBR is that increased range 

shifts of modern corals in response to climate change in the near future could potentially lower 

regional coral diversity in a similar fashion. The role of biodiversity in enhancing ecological stability 

has been demonstrated on small spatial and temporal scales79,87,81. For coral reefs, the diversity-

stability relationship apparently scales up to regional spatial scales12 and geologic time scales72. Hence, 

mitigation of current threats to coral reef diversity and function becomes especially critical.

The last glacial maximum
The last glacial maximum, dated to about 18 thousand years ago was a time when sea levels dropped 

to approximately 120 metres below present day levels. Kleypas74 estimated the amount of area available 

during such a drop in sea level for the Caribbean Sea and compared it to modern potential sites for 

reef growth. She found a greater than 90 percent drop in areas for potential reef growth during the 

last glacial maximum as compared with the present high sea level stand. Yet coral reef growth since 

then has been shown to accrete at some of the highest rates observed in coral reef settings. This is 

shown in the record of reef development from both Barbados and the Huon Peninsula29. This interval 

of reef growth appears not to have been unduly affected by initial starting conditions under which 

the areal extent of suitable habitat was an order of magnitude less than present. 

Response to sub-orbital climate events
Perhaps the best-known sub-orbital climate event is the Younger Dryas event occurring 11 to 10 

thousand years ago. In cores from both Barbados and Huon Peninsula, and in raised reef terraces 

from Huon Peninsula (Pandolfi unpublished data), rates of coral reef growth during the event itself 

were indistinguishable from growth before and after the event. This does not mean that reef growth 

was unaffected by the event since short-term interruptions in reef growth may be difficult to identify 

in ancient reef deposits. However, the Holocene raised reef terrace from Huon Peninsula, Papua 

New Guinea, preserves mass mortality events of reef corals mainly from volcanic episodes102 and the 

resolution of these intervals is approximately 200 years.

22.2.3 Adaptive capacity

Many marine species exhibit a genetic legacy of latitudinal range shifts, local extinctions and 

expansions, and the marked population fluctuations caused by past climatic variation57. Based on 

this past history, can we expect that regional and global-scale disruption to coral reefs generally, 

and to the GBR in particular, due to climate change will accelerate markedly in coming decades? 

Already, relative abundances of corals and of other organisms are changing rapidly in response to 

the filtering effect of differential mortality (from bleaching and other, more local, human impacts), 

and differences in rates of recovery of species from recurrent mortality events9,78,62,90. Furthermore, 

many, mainly terrestrial, organisms are already showing signs of evolutionary change in response to 

climate-induced environmental variation22. The degree to which this will hold in coral reefs is subject 

to intense debate, but the near and distant geological record preserves clear evidence that coral reefs 

have re-established after previous events. This indicates their ability to either adapt to changes, or 

exploit refugia in less affected areas, so that when optimal conditions returned, they again spread 

throughout their range. 
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Our results from Western Australia indicate that reef corals are able to expand their latitudinal ranges 

in response to climate change. Work by Pandolfi92 indicates that refugia also have played a role in 

the re-establishment of reefs during intervals of climate change during the last 100 thousand years. 

Refugia likely were important to the survival of molluscan faunas during this same interval128,129. 

22.2.4 Vulnerability and thresholds

The vulnerability of the GBR to projected global climate change cannot be considered without an 

understanding of both the history of reef development and the history of impacts that have led to 

habitat degradation. The diversity, frequency and scale of human impacts on coral reefs are increasing 

to the extent that reefs are threatened globally141. Until recently, the direct and indirect effects of 

overfishing and pollution from agriculture and land development have been the major drivers of 

massive and accelerating decreases in abundance of coral reef species85,67,1,49,63,100. These human impacts 

and the increased fragmentation of coral reef habitat are unprecedented and have the possibility 

to undermine reef resilience13, raising the likelihood that modern coral reefs might be much more 

susceptible to current and future climate-change than is suggested by their geologic history63,13. 

Recent work has sought to understand human impacts by developing time-series data archives that 

can be used to evaluate trends in the global decline of coral reefs since the arrival of humans. The 

approach has been to use a number of different kinds of data during several periods to examine the 

recent past history and present condition of coral reefs to provide a natural baseline for community 

ecology and coral growth rates. Archaeological sites provide insight into the relationship between 

the development of civilisation and its evolving impact on coastal marine resources. Historical records 

such as those found in ships logs, and publications of early naturalists and European colonialists 

provide a moving window of the natural history and inferred ecology of many coral reef inhabitants. 

Fisheries records and modern ecological surveys can be used in association with remote sensing 

data (going back the last 20 or 30 years) to provide a detailed picture of changing environments 

and biodiversity as human population and consumption, as well as economic globalisation, have 

accelerated during the past several decades. To document changing physical environments, coring 

of reef corals provides a proxy for sea surface temperature, rainfall, and river discharge80 from the 

geological past to the present. Taken together, these databases provide a holistic view of changing 

environments and ecology on coral reefs that includes the onset of human disturbances and against 

which the acquisition of present day data can be evaluated.

Recent findings from sites distributed throughout the tropical world point to the immense importance 

of understanding historical events when attempting to tease out factors that have or may influence 

present coral reef biodiversity100. At 14 sites worldwide (including the outer and inner GBR and 

Torres Straits) there was no increase in the acceleration of reef megafauna decline during the past 

century when disease and climate change appear to have intensified, rather, early and effective 

overfishing appears to have been the major culprit in reef decline100. A recent paper explored the 

policy implications of the historical ecological work and urged US government officials to adopt the 

large percentage of no-take areas for their reefs as Australia has done101. The main conclusions from 

the work were: i) overfishing is by far the earliest and most influential human impact on coral reef  

ecosystems, ii) degradation of coral reefs proceeded from the earliest human interactions and was 

independent of population growth, and iii) if the trajectories of change on coral reefs are not reversed 
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the current rate of decline in reef ecosystems will result in their extirpation independent of what 

happens to Earth’s climate. Correlation of reef decline with specific human and environmental impacts 

over time provides an insight into the processes that are most important in local reef settings. When 

these processes are uncovered, specific steps can be taken to ameliorate or reverse the decline.

22.2.5 Threats to resilience

The magnitude and frequency of documented incidences of abrupt climate change during the 

recent past history of living coral reefs (less than one million years) has been substantial, yet nowhere 

have the effects of this change been rigorously studied. This is in part due to the juxtaposition of 

geological processes operating over geological time scales onto ecological processes operating over 

much shorter intervals. The geological record does tell us that IPCC predictions for 21st Century 

climate change for sea level and sea surface temperature (SST) fall within the rates and magnitudes 

experienced in the recent geological past of living coral reef assemblages, but for CO2 they do not. 

The recent past history of modern coral reefs shows no slowing of reef growth through extreme SST 

and sea level events (Table 22.1). Ecologists and managers concerned about the vulnerability of reefs 

to projected rapid climate change must acknowledge the ability of coral reefs to either survive or 

quickly recover from extreme SST and sea level episodes. Study of the mechanisms through which 

reef survival or replenishment occurred over these intervals should allow for a better understanding 

of threats from climate to coral reefs over the next century. Similarly, the modern reef’s ability to cope 

with unprecedented changes in the rates and magnitudes of CO2 must also be seriously considered.

It is clear to us that climate change is coupled with multiple anthropogenic effects that are likely 

to threaten the global reef system. For the GBR, areas that are less influenced by humans such as 

the outer GBR are the least vulnerable while inner GBR areas that have suffered more from coastal 

influences would be more likely to suffer. Ultimately, this is an optimistic assessment since mitigation 

of local and regional sources of disturbance along the GBR are more easily achieved than mitigating 

increasing atmospheric concentrations of greenhouse gases.

As a paradox when considered in the context of past abrupt climate change and the apparent lack 

of permanent deleterious ecological effects, it is clear that marine ecosystems in general, and coral 

reefs in particular have been able to either survive from or quickly reconstitute after repeated extremes 

in climate. The mechanisms by which such resilience occurs need to be meted out, along with how 

that resilience is affected by the anthropogenic stress already imposed on living reefs prior to and 

concurrent with climate change. What are the mechanisms by which such resilience to climate 

change might have occurred in the past, and how will this resilience be affected by the anthropogenic 

stress already imposed on living reefs prior to and concurrent with climate change? For example, 

how does response to environmental change differ between exposure of pristine reefs to the abrupt 

climate change in the past versus overfished or polluted reefs today100? The El Niño event of 1998 

was instructive in that pristine reefs suffered bleaching equally to degraded reefs140. However, recovery 

times were markedly different105. What do past abrupt climate change events teach us about the 

ecological consequences of future climate change on coral reefs? Put another way: what, if anything, 

is fundamentally different about the global reef ecosystem today compared to the systems that 

either survived during or re-established after multiple climatic changes? The answer suggested by the 

historical and geological record is the presence of increasing anthropogenic disturbances.
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22.3 Summary and recommendations

22.3.1 Major vulnerabilities to climate change

One of the major vulnerabilities to climate change for the GBR is abrupt climate change. Most 

ecologists attempting to come to grips with the implications of climate change to their ecosystems 
are still envisioning climate change as gradual change associated with increased greenhouse gas 
emissions, albeit much faster than perceived rates of past change. Ecologists may be dramatically 
underestimating the magnitude, speed and extent of past climate change3,4,5 (Table 22.1). It is now 
becoming increasingly clear that sub-orbital and abrupt climate change events are part of natural 
climatic cycles. We need to better understand what the relationship is between the triggers of these 
events and rising climate change and what the effects will be on coral reef communities. Another key 
climate component is the dramatic rate of increase in CO2 levels. Though levels of CO2 have been 
substantially higher in the geological past, the ability for living corals and associated reef taxa to cope 
with present dramatic rates of change is unknown.

22.3.2 Potential management responses

Our recommendations concerning the vulnerability of coral reef communities of the GBR to projected 
change in climate over the next century are based on three pillars that summarise the results presented 
herein: i) The rates and magnitude of sea level and temperature changes over the next century are no 
greater than those experienced by living coral reefs throughout the past several hundred thousand 
years, but the magnitude and rates of CO2 rise are much higher than over the same interval; ii) the 
presence of Pleistocene fossil reefs at localities extending up to 500 km south of the limit to their 
modern counterparts in Western Australia suggest that, given suitable substrates and water clarity, 
coral reefs can expand their latitudinal range during episodes of heightened water temperatures (see 
also southern reef occurrences along eastern Australia107); and iii) coral reefs have been substantially 
impacted by human activities that appear to have accelerated in their intensity. Thus, dramatic 
changes in the magnitude and rate of change in climate variables coincide with impacted reefs that 
are heavily degraded by human activities. 

Recommendations
Our first recommendation is to immediately reduce human impacts on the GBR that are unrelated to 
climate change. Planned response to projected climate change on reefs should aim to increase the 
ability of coral to respond positively. We know that it is possible for ‘natural’ coral reefs to withstand 
severe changes in climate over short periods, so this will best be accomplished by reversing and 
mending reef degradation that has already occurred. This view stems not from denying the potential 
for large-scale mortality as a result of climate change; but is based on the response of reef growth 
through similar past intervals as evidence that the ecosystem has the potential to be resilient to 
climate change. Reefs have repeatedly assembled after multiple periods of moribundity, even on 
the GBR123. Therefore, even though present day coral distributions might reflect the upper thermal 
tolerances of corals42, the larger pattern suggests that even large-scale mortality may not result in 
the permanent demise of coral reefs worldwide over a geological timescale. One has to entertain the 
possibility that a more global view of reef distribution provides insurance against reef extinction when 

heightened temperatures and CO2 occur during climate change.
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One scenario that might have resulted in continuity of reef development over abrupt climate change 

events occurred during the last interglacial period. Extension of coral reefs during the last interglacial 

resulted in the occurrence of vibrant, diverse coral reefs as far south as Rottnest Island in Western 

Australia and Evan’s Head107 in New South Wales. Let’s imagine that past spikes in temperature 

resulted in a significant increase in coral bleaching events and greater than 90 percent coral mortality 

in the previously defined reef areas at low latitudes. New areas south of the original extension of 

coral reefs may have acted as relict populations seeding reefs further north, leading to subsequent 

sustained recovery of northern Australian reef populations. Southern populations have a precedent for 

re-seeding northern reefs on the GBR during glacially-induced sea level rises (since deeper southern 

GBR reefs probably supported reef growth sooner than the shallower shelf where northern GBR reefs 

reside), for example from the last glacial maximum 18 to around six thousand years ago. Clearly, 

extension of GBR corals south of their present ranges will depend on a myriad of factors, including 

substrate availability and ocean acidity. Regardless of the efficacy of this scenario, the important point 

is that past reefs, even on local spatial scales, have survived or quickly recovered from past climate 

fluctuations. Again, the important differences in the modern setting are anthropogenic degradation 

and heightened rates and magnitudes of CO2.

Our second recommendation is to re-focus management away from maintenance of the status quo 

(‘our GBR – let’s keep it great’) to active restoration of reef resilience (‘our GBR – let’s get it back’). 

The best way of ensuring the successful transition of GBR reefs through abrupt or gradual climate 

change is to restore the ecosystem to good health. It is apparent that this is not presently the case for 

the GBR100,101,13,36. Therefore, management actions cannot only protect areas of the reef from further 

degradation. Instead, management must now take proactive steps that recover losses and reverse 

the trajectory of decline101. Efforts toward large-scale and whole-sale restoration of both herbivore 

populations and nearshore water quality represent the most immediate challenges.

We recommend positive actions that adhere to a ‘no-regrets’ policy and provide benefits regardless of 

the magnitude, rate or degree of future climate change88. Both scientific and political activities should 

be geared toward enhancing the ability of the GBR to weather the coming climate storm; if no such 

storm arises, then such activities will still have been favourable to the intelligent management of one 

of Australia’s leading tourist attractions and, more importantly, one of it’s national treasures. We can 

think of no better ‘no-regrets’ policy than reversing the trajectory of decline of the GBR, restoring the 

majestic trophic structure that Captain Cook took in when first plying the emerald seas of this brave 

new world.

22.3.3 Summary

Some of the physical changes that are projected to occur in the coming century64 have occurred 

repeatedly throughout both the past two million years of the Quaternary period and in the more 

distant past, while others have not. Reef coral communities in the distant past rebounded from 

decimation resulting from climatic events that affected the global marine biota. Recovery intervals 

varied from four to 100 million years, during which time framework building organisms were largely 

absent from reef ecosystems. More recently, Quaternary coral reef development either proceeded 

undeterred throughout climatic changes or recovered so quickly as to leave no record of their 

demise. The major difference between past reefs and those confronting climate change in the next 
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century is that today’s reefs have been preconditioned by human impacts such that the frequency of 

disturbance might have decreased their resilience to perturbations63. Thus, the GBR is vulnerable to 

global climate change not only because of the physical changes in environmental conditions, but also 

because these changes will be brought upon an already stressed ecosystem.

22.3.4 Further research

Consideration of acclimation and adaptation of coral reefs in the context of new advances in climate 

research and anthropogenic stress provides a significant step forward in the inter-disciplinary synthesis 

and prediction of coral reef response to climate change. For their part, coral reef ecologists and 

physiologists are engaged in a lively debate over how climate change might impinge on the survival 

and growth of coral reefs. The debate encompasses views ranging from extirpation59, to change but 

not extirpation63, to intact survival26,10,11,113. Nowhere in the debate is there a consideration of ‘abrupt 

climate change’ in the geological past (which reefs have either survived or quickly replenished from) 

or future (which will occur to anthropogenically stressed reefs100). Current debates on coral/symbiont 

acclimation or adaptation need placement in the context of historical response of natural reefs to 

‘abrupt climate change’ vs. future response on modern, anthropogenically stressed reefs.

One of the great challenges is to generate information on the role of habitat degradation and loss 

of biodiversity on the resilience of GBR communities. In the face of imminent climate change there 

will be cries from every field of inquiry for immediate research needs. An immediate concern is 

an understanding of how to foster resilience of already multiple-stressed coral reef communities 

(by anthropogenically-induced sources of mortality and habitat degradation) under impending 

predicted climate change. In other words, we need a better understanding of how resilience can be 

maintained and improved in impacted coral reefs. For example, the diversity-stability relationship 

has been established at both ends of the spatio-temporal spectrum (short observation intervals 

and experimental scales to millions of years and global scales). Understanding this relationship at 

intermediate scales – the range of long-term ecosystem management – will facilitate our ability to 

foster resilience. An understanding of improving resilience is probably the best defence we can have 

over a highly variable and potentially unpredictable future.
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