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EXECUTIVE SUMMARY 

Monitoring of ecosystems is essential for understanding the status of their health, the drivers 

of change, and measuring the effectiveness of various management actions. Monitoring of 

ecosystems, particularly marine ecosystems such as coral reefs, requires costly and time-

consuming field work, placing a heavy constraint on the number of locations that can be 

monitored. The sampling density is often orders of magnitude less than is required to fully 

understand the dynamics of these complex environments. 

In this project we develop a multi-criteria analysis and optimisation tool, called the Monitoring 

Site Planner, to assist in the evaluation of the existing and new proposed coral reef 

monitoring programs for the Great Barrier Reef (the Reef). This tool allows the performance 

of a given monitoring survey design (a set of reefs that will be monitored) to be evaluated 

against a set of performance criteria. This tool can be run as an interactive web application 

that is available for use from https://tools.eatlas.org.au/msp.  

Predicting the future performance of a monitoring program is difficult because the drivers of 

change for the Reef are predominantly unpredictable acute disturbance events such as 

cyclones, bleaching and crown-of-thorns starfish outbreaks. The Monitoring Site Planner tool 

does not try to predict these future pressures, but instead focuses on ensuring the 

monitoring program captures the diversity of different conditions and places within the Reef. 

The Monitoring Site Planner tool assesses a given survey design with the following criteria: 

 Environmental gradients: These criteria assess whether the monitoring program 

captures the diversity of environmental conditions that influence coral communities 

including secchi depth, temperature and current.  

 Fairness tests: These criteria assess whether the monitoring program has a fair 

number of monitoring sites in each NRM region and whether there is a fair number of 

pairs of reefs (one open to fishing / one closed to fishing) in each reef bioregion. 

These criteria help ensure an even spatial spread over each of the representative 

areas of the Reef. 

 Historic data: This criterion determines what percentage of historic data is captured 

by the specified monitoring locations. This helps ensure that reefs with significant 

historical data are retained. If an existing monitoring site is moved to a new location 

then it should be from an existing site with little historic data. 

Additional criteria can be added to the tool if necessary. 

The currently implemented criteria were chosen to ensure that good survey designs should:   

 Provide information about the status and trend of the Reef as a whole, as well as 

each region within the Reef.  

 Include important historically monitored reefs to allow long trends to be tracked. 

 Allow the continued evaluation of key management questions, in particular the 

effectiveness of the Marine Park zoning. 

https://tools.eatlas.org.au/msp


 

 

This tool helps choose which reefs should be monitored for any given monitoring program 

size, allowing the monitoring program to be adjusted to the program’s available funds. 

In this report we present the results of using this tool to compare the estimated performance 

of the existing coral reef monitoring on the Reef against a redesign based on expert opinion 

to improve its spatial coverage, verses a survey design optimised by the Monitoring Site 

Planner. We show that the expert redesign improved the performance of the monitoring 

program on all criteria except historic data. Existing historic monitored locations 

(corresponding to 14 per cent of all historic data) were traded for more spatial cover. The 

optimised survey design generated by the Monitoring Site Planner optimiser significantly 

outperformed the manual expert design on all criteria, improving the spatial coverage with far 

less loss of historic data (10 per cent of all historic data). This shows that the optimisation 

tools within the Monitoring Site Planner can be used to generate high quality monitoring 

programs of any size.  

The Monitoring Site Planner can be used as a tool to assist key Reef 2050 Integrated 

Monitoring and Reporting Program (RIMReP) stakeholders and the Coral Reef Expert Group 

to determine the best trade-offs between different criteria and monitoring program size. The 

Monitoring Site Planner can be extended to include additional criteria and ‘must have’ sites 

as needed. The advantage of using the interactive Monitoring Site Planner for future design 

refinement is that trade-offs between various criteria can be easily evaluated and visualised
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1 BACKGROUND 

As part of the Reef 2050 Integrated Monitoring and Reporting Program (RIMReP) there is 

renewed interest in assessing and improving the effectiveness of existing monitoring 

programs associated with the Great Barrier Reef (the Reef). Under RIMReP, multiple 

monitoring programs will be integrated and redesigned, with the goal of ensuring that there is 

sufficient monitoring to assess the effectiveness of the Reef 20050 Long-Term Sustainability 

Plan (Reef 2050 Plan) and to enable improved management of the Reef. 

A number of issues have been raised with the existing coral reef monitoring of the Reef 

including its spatial coverage and temporal sampling. The existing monitoring has significant 

gaps in its coverage, in particularly in the Cape York region where there are no monitoring 

locations north of Lizard Island. The Australian Institute of Marine Science (AIMS) Long-

Term Monitoring Program (LTMP) provides monitoring of mid-shelf and offshore reefs along 

the Reef. In 2006 the program was adjusted to monitor pairs of reefs to assess the 

effectiveness of rezoning. This doubled the number of fixed site reefs being monitored, and 

so with a relatively fixed budget the sampling was reduced from annual sampling to biennial 

where approximately half of the sites were monitored each year. This change introduced 

problems due to the infrequent sampling and low spatial coverage in any given year.  

In this project we focus on developing a tool for assessing and improving the spatial 

coverage of the monitoring program, not analysing how temporal sampling affects the 

monitoring performance. At this stage we assume that the sampling is regular with all 

monitoring sites in a survey design being sampled in the same year.  

Redesigning the existing coral reef monitoring of the Reef requires a careful trade-off 

between the costs of adding new monitoring locations against improvement in the spatial 

coverage. Improvements to the efficiency of the monitoring program (as measured by the 

amount of information we get verses the number of monitoring locations) can be achieved by 

moving existing monitoring locations from areas where there are redundant multiple sites in 

close proximity, to areas where there is little sampling. This, however, results in a trade-off 

between retaining locations with historical data for improved future monitoring efficiency. 

There is also a trade-off between pairing monitored reefs for evaluating the rezoning of the 

Great Barrier Reef Marine Park (the Marine Park), where the pairs should be similar close 

reefs, and spatial coverage where the monitored reefs should be spread apart from each 

other. 

There is a complex interplay between these trade-offs and so a multiple-criteria tool was 

developed to make this process more objective, easy and transparent.  

1.1 A multi-criteria analysis and optimisation tool for assessing 

coral reef monitoring of the Great Barrier Reef 

In this project we develop a multi-criteria analysis and optimisation tool, called the Monitoring 

Site Planner, to assist in the evaluation of the existing and newly proposed coral reef 



2 

 

monitoring programs for the Reef. This tool allows the performance of a proposed monitoring 

survey design (a set of reefs that will be monitored) to be evaluated against a range of 

criteria.  

The Monitoring Site Planner tool can be run in two modes: as an interactive web application 

and on a headless cloud server (no user interface) for executing large optimisation runs.  

As a web application it allows users to explore, evaluate and visualise changes to survey 

designs as well as run the optimisation features. The Monitoring Site Planner can be run 

from https://tools.eatlas.org.au/msp  

When the tool is run as a server application it can be scripted to run batches of 

optimisations, without the overhead of running in a web browser. This allows optimisations to 

be run in parallel in the cloud, speeding up the time to produce optimised survey designs for 

a given set of criteria and weights. All the optimised survey results shown in this report were 

run on a cloud server. 

 

Figure 1. Screenshot of the Monitoring Site Planner tool. This shows the tool running as a web 

application that allows users to interactively change a survey design and see how these 

changes are reflected in the performance of each criteria. 

https://tools.eatlas.org.au/msp


3 

 

 

Figure 2. Second screenshot of the Monitoring Site Planner showing the mapping, save and 

load and optimisation features.  

1.2 How do we predict the performance of a monitoring survey 

design? 

Predicting the performance of a monitoring program is difficult as it requires us to estimate 

how well a given survey design will allow us to understand the future state of the Reef. This 

is challenging as the key drivers of change on the Reef are largely unpredictable acute 

disturbances such as cyclones, bleaching and crown-of-thorns starfish outbreaks, where 

historical events provide little guidance on the location of future events, particularly for 

cyclones and bleaching. In this work we assume that the relative spatial distribution of risk 

from disturbances is too poorly known to directly inform the coral reef survey design. We 

instead work from the basic assumption that the monitoring program should reflect the 

diversity of different conditions and places within the Reef. To achieve this we use two 

approaches: environmental gradients such as temperature, water quality and currents are 

used as proxies for the diversity of conditions that affect the composition of coral 

communities, and the Reef Bioregion mapping (developed as part of the Representative 

Areas Program) is used as part of the Marine Park Zoning + sub-bioregion criteria to ensure 

an even spread of reef pairs over each sub-bioregion.  
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Figure 2. Overview of the types of criteria used in the Monitoring Site Planner. The fairness 

test criteria measures if the survey design contains an even spread of monitoring sites. The 

environmental gradients criteria assess if the survey design can be used to reconstruct a 

known gradient at all reefs. The historic monitored reefs criteria measures how much of the 

survey design contains sites with historic monitoring data. The tool also supports specifying 

“Must Have” reefs that should be included in any optimisation for reasons not captured in 

any of the other criteria. 

The Monitoring Site Planner has criteria that assess whether a monitoring survey design: 

 Has monitoring sites spread evenly over all representative areas. 

 Captures the patterns of the environmental gradients. 

 Links with historic data to ensure that long-term trends can be understood. 

 Allows continued evaluation of the effectiveness of the Reef zoning. 

These criteria are weighted and combined together to create a final score for a given survey 

design. The weights can be used to change the relative importance of each criteria to the 

final design of the monitoring program.  

The criteria have been scaled so that a perfect score is 0 and a bad score is 1. This 

approach means that when multiple criteria are added together a perfect score still is 0. This 

approach was adopted as a natural extension of the Environmental Gradient criteria where 

the score is based on the reconstruction error. The best reconstruction has 0 error and thus 

the perfect score was 0. All other criteria were adapted to using this same approach.   

The Monitoring Site Planner allows the user to interactively change the survey design to find 

the corresponding changes in the criteria performance. They can also use a range of 

automated optimisation tools that can iterate through thousands of survey designs to find the 

best designs for the chosen set of criteria and weights. 
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2 FAIRNESS TESTS 

2.1 Natural Resource Management fairness test 

The Natural Resource Management (NRM) fairness criteria ensures that each region gets a 

fair number of monitoring locations. This partly helps with the spatial spread of monitored 

pairs but was mainly added to ensure the monitoring-supported NRM groups understand 

their marine environment. For each NRM this criterion calculates the percentage number of 

monitored reefs in the region, ignoring the position within the region. It then looks at whether 

there is a fair number of monitored locations across all NRM regions by calculating the 

variance between the percentage counts. If all NRMs have the same percentage number of 

monitored reefs, then it receives a perfect score of zero. This criteria scales with the size of 

the monitoring program and so a small or large monitoring program can do well on this 

criterion.  

2.2 Great Barrier Reef Marine Park Zones + Sub-Bioregion – 

Zoning pairs per sub-bioregion 

This criterion serves two roles in assessing a given survey design. It assesses how useful 

the monitoring program will be for evaluating the effectiveness of the marine park zoning and 

whether the monitoring sites are evenly spread over each of the representative areas of the 

Reef.  

This criterion assesses the suitability of the survey design for evaluating the performance of 

the zoning of the marine park. A good survey design must contain pairs of reefs, one open to 

fishing (blue zone) and one closed to fishing (green zone), that can be used to compare the 

relative performance of areas closed to fishing with those open to fishing. It is also important 

that this comparison is performed over different regions of the Reef and that the pairs of 

reefs are similar and close together (i.e. likely to get a similar amount of fishing pressure). As 

there is no dataset that captures the similarity in geomorphology between reefs we instead 

cluster reefs based on sub-bioregions developed as part of the Representative Areas 

Program (RAP) bioregions developed for the Marine Park rezoning (Great Barrier Reef 

Marine Park Authority, 2001). These reef sub-bioregions were developed by a panel of 

experts and based on more than 40 layers of data. The sub-bioregions is a clustering of the 

Great Barrier Reef reefs into 81 areas of similar reefs. Reefs are considered suitable for 

pairing if they are both in the same sub-bioregion.  

Some reef sub-bioregions are much larger than others and thus there should be more pairs 

of reefs in these regions. To achieve this in the criteria, each sub-bioregion was allocated a 

quota of reef pairs based on the area of the sub-bioregion, with an average of two pairs over 

all sub-bioregions. The sub-bioregions for reefs were mapped as a polygon following the 

outer boundary of all the reefs contained in the sub-bioregions.  
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Figure 3. Calculation of the Marine Park Zones + sub-bioregion criteria. This shows the 

calculation of this criteria for three scenarios of a simplified example with only two sub-

bioregions. Sub-bioregion 2 is twice as large as sub-bioregion 1 and so has twice the quota 

of paired reefs. Within each of the sub-bioregions, only pairs of green (closed to fishing) and 

blue (open to fishing) reefs are considered. Unpaired reefs are ignored by this criterion, 

allowing them to be moved around for optimising other criteria. In scenario 1 most of the 

reefs are unpaired, resulting in neither sub-bioregion reaching their quota, leading to a poor 

criteria score, where 1 is the worst score and 0 is a perfect score. In scenario 2, sub-

bioregion 1 still has no match pairs and so scores poorly. Sub-bioregion 2 has more than its 

allotted quota. Exceeding the allotted quota does not further improve the score. In scenario 

3 each sub-bioregion has reached its allotted quota and thus receives a perfect score. 

Additional unpaired reefs don’t contribute to this criterion. 

2.3 Environmental Gradient criteria 

Often for management purposes it is important to understand the state of the whole Reef, 

including areas that have not been monitored. We can estimate the state of unmonitored 

areas using models that interpolate from neighbouring monitored reefs. How well this works 

depends on the density of the monitoring and how well the monitored reefs represent the 

surrounding unmonitored reefs; in other words how well they are correlated. If the monitored 

locations are chosen at representative locations then the interpolation process will work 

better, resulting in a better reconstruction of the state of the whole Reef. 

The original concept of this criteria was that if we somehow knew the historic state of all the 

reefs (via a massive hypothetical monitoring program) then we could test the performance of 

smaller survey designs by seeing how the measurements at the monitored sites could be 

used to reconstruct the state of all reefs. If the survey design captured most of the spatial 
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patterns, then there would be little difference between our reconstruction and the known 

state at each reef.  

Since we don’t know the historical state for each reef we must therefore adapt the idea to 

use a source of information that we do have for all reefs. If we can reconstruct, from 

monitored sites, key environmental gradients (temperature, water quality and currents) that 

affect coral reef communities then we assume that we will have a monitoring program that 

captures much of the spatial diversity of the Reef. 

This criterion requires that the environmental gradient data is known for all reef locations. 

This limits the data that can be used to drive this criterion. We therefore rely on 

environmental gradients estimated from remote sensing and eReefs models. 

Table 1. Environmental gradients available in the Monitoring Site Planner.  

Environmental 

Gradient 

Notes Data source 

Temperature Approximate summer peak 

temperature over the Reef. (15th 

February in daily climatology) 

Approximate winter coldest 

temperature over the Reef. (15th 

August in daily climatology) 

SSTAARS (Wijffels, et al. 

2018) 

Daily climatology derived from 

IMOS remote sensing. 

Water quality Primary (used for survey design 

optimisation):  

 Secchi depth annual 

average 2011 (wet year), 

2015 (dry year)  

Secondary (used for comparison):  

 Chlorophyll annual average 

2011 (wet year), 2015 (dry 

year) 

 Non-algal particulates 

(NAP) annual average 2011 

(wet year), 2015 (dry year). 

eReefs BOM Water Quality 

Dashboard (BOM, 2018, 5 

30). Secchi (Weeks, et al. 

2012)   

Yearly average based on 

MODIS remote sensing. 

Current Maximum annual current 2017. 

Also used as to detect reefs with 

currents that are too high to safely 

monitor. 

eReefs Hydro v2 1km model. 

(Lawrey & Smith, 2017) 
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Figure 4. Overview of the calculation of the Environmental Gradients criteria. The 

Environmental Gradients criteria assesses how well the data measured at the monitoring sites 

can be used to reconstruct the original environmental gradient at all coral reefs. The 

environmental gradient is sampled based on the survey design. These measurements are then 

interpolated to produce an estimate for all reefs using an Inverse Distance Weighted (p=2, n=6) 

model. The reconstruction error is then estimated and normalised to a score from 0 (no error) 

to approximately 1, by dividing the mean squared error by the variance of the original 

environmental gradient. This normalisation helps ensure a similar scale to the criteria scores, 

irrespective of the units of the environmental gradient. 

2.3.1 Choice of secchi as the primary water quality environmental gradient 

While multiple water quality gradients (chlorophyll, Non-Algal Pariticulates (NAP) and secchi) 

were set up in the tool there was concern over the correlation and reliability of these data 

sources. An analysis was performed to look at the correlation between these measures and 

the affect each measure had on the resulting optimised monitoring program. It was found 

that chlorophyll, NAP and secchi depth were very strongly correlated, making the use of all 

three criteria redundant. Using each of these measures to optimise the monitoring program 

result in differences due to the different non-linear mapping between water quality and each 

measure. In poor water quality conditions, chlorophyll and NAP are high, whereas secchi is 

low. Chlorophyll and NAP have a linear change with water quality, whereas secchi has a log 

relationship. This difference results in each criterion emphasising monitoring sites either 

inshore (chlorophyll and NAP) or mid-shelf and offshore (secchi).  

In recent years there have been concerns about the accuracy of remote sensing water 

quality products, particularly in inshore areas (Tracey, Waterhouse & da Silva, 2016). For 

this reason, we use secchi as our primary water quality criteria for all optimisation and 

survey design comparisons. The secchi criteria is less sensitive to these inshore areas 

where the error is likely to be largest. Secchi values decrease near the coast and since the 

reconstruction errors are approximately proportional to local mean value (due to the use of 
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the Inverse Distance Weighted interpolation models used), any errors in the inshore areas 

will contribute less than errors in the offshore areas where the secchi is high. Chlorophyll 

and NAP both have high values in inshore areas resulting in an emphasis on the inshore 

areas where the original data is not likely to be robust.   

2.3.2 Reconstruction interpolation 

In the future, to create an accurate estimate of the status of the Reef, monitoring results 

would need to be fused with additional data about current environmental conditions and 

disturbance events using a complex model.  

In the Environmental Gradient criteria we approximate this process by sampling the 

environmental gradient (which represents the average environmental conditions) at the 

monitored locations, then attempt to reconstruct the original environmental gradient at all 

reefs. How well the reconstruction works serves as the metric for how well the monitoring 

locations are positioned. If the survey design has few locations in a large area, then the 

reconstruction will be poor and the criteria will rate this design poorly. Even if there are lots 

of monitoring locations but they are not well spaced but clumped close together then the 

reconstruction will be poor and this survey design will receive a poor score.  

For this analysis we use a simple robust interpolation model that can be applied 

independently to each environmental gradient. We use an Inverse Distance Weighted (n=6, 

p=2) interpolation for all analysis. This model uses the information from the 6 closest 

monitoring sites and their distances to produce an interpolated estimate for an unmonitored 

reef. Appendix 7.1 provides more details about additional interpolation models available in 

the Monitoring Site Planner. 

2.4 Historic data criteria 

The historic data index criterion assesses what percentage of all historic data is captured by 

the reefs in the survey design. The index is calculated by summating the number of years 

that the reef has been surveyed, with each survey type (benthic, manta tow, fish, etc.) being 

weighted by the type of the survey. Some of the survey types, such as the LTMP benthic 

surveys are highly detailed and provide a lot of information about the status and processes 

of the reef, where as other surveys such as the LTMP scuba survey only provides a quick 

assessment of the drivers of change and thus has been given a lower weight in the final 

historic data index.  

Note: This historic data criterion focused on data from fixed site monitoring programs and 

data that was available to the authors. 
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Table 2. Relative weight applied to each type of historic data. The historic data index is the 

weighted sum of the number of years monitored at each reef. These weights were based on 

expert opinion. Example: A reef with 5 years of LTMP manta tows, 2 years of LTMP benthic and 

2 years of LTMP Juvenile surveys would have an historic data index of 5 x 1 (manta) + 2 x 1 

(benthic) + 2 x 0.5 (juvenile) = 5 + 2 +1 = 8. The historic data criteria is then a measure of the 

fraction of all historic data covered by monitoring locations. 

Historic data 

measure 

Index 

weighting 

LTMP Benthic 1 

LTMP Fish 1 

LTMP Manta 1 

LTMP Scuba 0.2 

LTMP Juveniles 0.5 

JCU Fish 1 

JCU Benthic 0.5 

 

2.5 “Must Have” reefs 

Some reefs have high value characteristics not captured in the criteria analysis data. To 

ensure that these reefs are included in optimised survey designs, the Monitoring Site 

Planner supports tagging some reefs as “Must Have” reefs. These reefs are prevented from 

being removed or left out by the optimisation tools.  

Appending 7.2 shows the list of “Must Have” reefs that were included in the analysis that is 

presented in this report.  

3 REEF DATABASE – DATA TO DRIVE THE CRITERIA ANALYSIS 

All the data needed to drive the Monitoring Site Planner was condensed into a single reef 

database. An overview of the data and workflow used to create this database is outlined in 

Figure 5. The Great Barrier Reef Database was initially based on the Complete Great Barrier 

Reef and Island Features dataset (Lawrey & Smith, 2017). This dataset includes reefs and 

island features from both the Marine Park and Torres Strait. Each reef was then augmented 

with additional attributes for the reef derived from various environmental gradients (current, 

temperature, and water quality), regional information (zoning, NRM regions), basic logistics 

information (reef top and maximum currents) and a record of the amount and type of historic 

data available at each reef. The reefs from just the Marine Park were then extracted for use 
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in the Monitoring Site Planner. These reefs correspond largely to reef boundary features 

originally developed by the Great Barrier Reef Marine Park Authority (the Authority). 

 

Figure 5. Overview of the source data and processing used to create the Great Barrier Reef 

Database. This database is used to drive the Monitoring Site Planner Tool.  

3.1 Logistics – Which reefs can be monitored? 

The Great Barrier Reef Database contains over 3000 reefs, however, many of these are 

unsuitable for monitoring using existing techniques. Current coral reef monitoring focuses on 

broad scale reef slope monitoring with manta tow surveys and detailed benthic and fish 

surveys also on shallow reef slopes of the northeast flank of reefs (Jonker et al. 2008). By 

focusing on one reef habitat, the results of all monitored reefs are comparable. If different 

reef habitats (such as the reef top, reef slope, back reef) were monitored on different reefs 

then they could not be combined to produce region-wide summaries. While it would be 

possible to survey multiple reef habitats on all reefs through a greatly expanded monitoring 

program, or via the introduction of a new technology, this was not considered as part of this 

project.  

The Monitoring Site Planner was set up under the assumption that any new coral reef 

monitoring would continue to monitor shallow reef slope habitats. As a result, a reef can only 

be surveyed if it has a shallow reef top, with an associated reef slope. A reef can also only 

be surveyed if the currents around the reef are not too large. High tidal currents pose a 

safety hazard and make it impractical to survey. The following criteria were used to 

determine which reefs might be suitable for monitoring:  
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 The reef must have a reef top (area shallower than 5 m) 

 The reef top perimeter is between 1.5 km and 30 km in length 

 The maximum annual current is less than 1.4 m/s (as determined by the eReefs 

hydrodynamic model). 

These threshold values were picked based on a discussion with the LTMP team and the 

range of values observed in the current monitoring program. While these thresholds included 

nearly all existing monitored reefs there were a number of exceptions. In some existing 

cases reefs with a perimeter larger than the threshold are being monitored. These reefs 

were manually added back as potential reefs for surveying.   

This filtering removed 50 per cent of all the reefs on the Reef, limiting the reefs that could 

potentially be selected for monitoring in the Monitoring Site Planner. This filtering is 

particularly important for preventing the optimiser in the Monitoring Site Planner from 

designing a monitoring program with reefs that are unsuitable for monitoring. 

3.1.1 Limitations in the logistic filtering 

The approach used does however have some significant limitations and failings.  

The eReefs 1 km hydrodynamic model fails to fully resolve many of the high currents 

experienced between close neighbouring reefs and so the filtering based on maximum 

current failed to remove quite a few reefs that are likely (based on their geomorphology) to 

have high reef slope currents. Most of these reefs were manually filtered out.  

The approach does not consider the reef geomorphology and so there is no verification that 

there is a reef habitat (well-formed north east reef slope) suitable for monitoring.  

Additionally, there is no consideration of safety issues from crocodiles. There was no reliable 

crocodile risk model available at the time of development and so without this filtering the 

Monitoring Site Planner often picks inshore areas (particularly in Cape York) that are likely to 

be unsuitable for safe monitoring with divers. 

It is therefore important that recommendations generated by the tool are carefully reviewed 

for logistics not considered by the tool. 

3.2 Optimisation – Automated monitoring program design  

The Monitoring Site Planner allows users to interactively change a given survey design and 

see whether the changes they make improve the performance of the monitoring program (as 

measured by the criteria).  

Using the interactive tool to optimise a monitoring program it quickly becomes apparent that 

there are a huge number of possible survey designs and discovering the best combination of 

locations using this process could take a very long time. For this reason, the Monitoring Site 

Planner contains two optimisation features that allow automated searching for good designs.  
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3.3 Genetic Algorithm optimisation – Automated survey designs 

from scratch 

The first optimiser (Select optimised sites on the user interface) searches from scratch a 

survey design that performs well against the specified criteria and weights. This optimiser 

uses a genetic algorithm (see Figure 7) to progressively find new survey designs that 

perform better against the criteria. Due to the random nature of this optimiser it makes no 

assumptions about what a good solution should look like, but is directed solely by the 

specified criteria and weights. This makes it a useful tool for providing an independent 

opinion on what makes a good monitoring survey design. This optimiser is, however, slow 

due to the large number of survey designs that must be tested. The optimised survey 

designs presented in this report (in section 4 and 5) each required testing 100,000 potential 

monitoring designs (5000 generations, each with a population of 20), taking weeks of 

computation to produce.  

 

Figure 7. Overview of the Genetics Algorithms optimiser (Select optimised sites on the user 

interface). This uses genetic algorithms to find good survey designs that match the specified 

criteria and weights. This process starts with a population of random survey designs (typically 

20 – 40). These are then each evaluated against the performance criteria. The best ones are 

kept to make the next generation (typically 20 per cent of the original population). A new 

population is then created by mixing the designs from the previous generation (equivalent to 

sexual reproduction). Noise is then added by randomly moving some of the locations 

(mutation). The process is then repeated (typically for 1000 – 10000 generations). The amount 

of noise added is slowly reduced over the generations.   

3.4 Thinning out optimisation – Removing underperforming 

monitoring locations 

The second optimisation feature (Thin out selected sites on the user interface) is designed to 

refine an existing survey design by progressively removing sites from a given survey design. 

It removes monitoring locations that least contribute to the performance of the survey design. 

This feature can typically remove 10 – 40 per cent of the monitoring program locations with 
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only a small degradation in the performance (as determined by the criteria) of the survey 

design. How many locations can be removed depends on how optimised the survey design 

was to start with. 

All the optimised results shown in this report used a combination of both optimisers.  

4 RESULTS – OPTIMISED SURVEY DESIGNS – ONE CRITERION 

AT A TIME 

What would the best monitoring program look like if we only cared about one criterion at a 

time? If all that mattered was our ability to monitor coral reefs across different water quality 

gradients what would be the best survey design? Studying the optimal survey design for 

each criterion helps us understand what each of the criterion are trying to achieve. Having 

an understanding of each individual criterion allows us to better understand the results as we 

mix and match multi-criteria with different weights.  

The optimisation features in the Monitoring Site Planner tool were used to generate an 

optimised survey design with 50 monitoring locations for each of the key criterion setup in 

the tool. This number of locations was chosen because it is sufficiently high that the general 

patterns of the survey design can be seen, without too much detailed clutter. The number of 

locations is not a recommendation on the number of monitoring locations needed in a real 

monitoring program. 

Figure 6 shows the results for each of the environmental gradients criteria.  

For the maximum current environmental gradient (a) we can see a distinct lack of monitoring 

locations in the middle section of the Reef. The ocean currents in this region are quite low. In 

the southern and northern tip of the Reef there are quite strong tidal currents that pass 

through the reef matrix. As a result, these two regions have lots of detail that needs to be 

recreated by the monitoring.  

For the secchi depth environmental gradient (b) there is a very even spread of monitoring 

location along the whole of the Reef. This is because there is a strong inshore to offshore 

gradient. The monitoring is made up of roughly evenly-spaced pairs of inshore and offshore 

locations that are at right angles to the secchi gradient.  

For the temperature environmental gradient (c) the pattern of monitoring location spacing is 

mixed. There is a strong, but gentle north-south gradient and an inshore, offshore gradient in 

parts. 

We can see from this analysis that the ideal monitoring survey design varies with each 

environmental gradient and that there are few particularly special reefs that are common to 

all gradients. In this analysis we only consider a few of the drivers of coral communities due 

to a lack of data and the approach and so we should be cautious about taking the optimised 

multi-criteria results at face value. Choosing a different set of environmental gradients or 

changing the weights of the gradients will result in a different optimised survey design. 
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a) maximum annual current  b) Secchi depth  c) Summer maximum 

temperature 
(2017 eReefs 1km hydro (2011 annual average 

model v2) secchi)  (From daily SSTAARS 

climatology)  

Figure 6. Results of optimising the survey design with only 50 monitoring locations, against 

each of the environmental gradients. We can see that the monitoring locations tend to be 

positioned in areas of rapid gradient changes and are spaced at right angles to the main 

gradient.  

Figure 7 shows optimised survey designs with 50 locations for each of the Marine Park 

Zones + sub-bioregion, historic data and the NRM fairness criterion. These are not as 

informative as the optimised designs for the environmental gradients. Figure 7a shows that 

with only 50 reefs and over 80 sub-bioregions there was little ability to produce an optimal 

pairing of reefs with so few monitoring locations. If we were designing a monitoring program 

this small it would be better to use large regions for pairing such as bioregions, rather than 

sub-bioregions. The optimal 50 location survey design for historic data simply corresponds to 

the 50 sites with the most historic data (see Figure 7b). The NRM fairness test is the least 

spatially explicit criteria (see Figure 7c). Its only concern is that the number of monitoring 

locations within each NRM region is in proportion to the number of reefs in that region. It 

does not care where they are within the region. Cape York has the most reefs and thus gets 

the most number of monitored locations.  
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a) Marine Park Zones + b) Historic data c) NRM fairness 

Sub-Bioregion 

Figure 7. Optimised survey designs, one criterion at a time for the Marine Park Zones + sub-

bioregion, historic data and the NRM fairness criterion. This shows optimisation with just 50 

reefs. a) The blue and green dots represent the zoning of each reef and the polygon 

boundaries show the sub-bioregions. b) Optimal survey design for historic data criteria. The 

size of the purple dots represents the amount of historic data at each reef. c) Each NRM region 

is shown as a different colour. The 50 reefs are spread fairly across the 6 NRM regions based 

on the number of reefs in each region.  

4.1 How much variability is there in the optimised survey designs? 

The Monitoring Site Planner uses two optimisation techniques to produce the final optimised 

survey design based on the selected criteria and their weights. The primary optimiser uses 

genetic algorithms to evolve a solution that performs well. This process is stochastic as the 

optimisation process uses random modifications to find new and better solutions. As a result, 

each run of the optimiser will produce slightly different results.  

We would assume that given enough searching the optimiser could find the ultimate best 

solution. This is, however, impractical due to the immense number of possible survey 

designs. Even with as few as 50 monitored reefs there are over 1090 possible survey 

designs. The optimisers do not search all possible designs, but instead focus on finding 

progressively better survey designs. There are many, many survey designs that are good 

and of similar level of performance.  
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Figure 8 shows multiple runs of the optimiser on a single environmental gradient, in this case 

secchi. The Genetic Algorithm optimiser was run for 5000 generations with a population of 

20. The optimiser was also run over two versions of the environmental gradient (2011 and 

2015) to see how slight changes in the gradient would change the survey design pattern. We 

can see that the reefs chosen are different in each run, but there are common large-scale 

patterns to the design.  

We should keep the variability in the survey designs in mind when we consider the final 

multi-criteria survey design. The Monitoring Site Planner provides recommended patterns for 

the survey design, however there are many, many similar performing survey designs. If we 

need to change the monitoring survey design for practical reasons not considered by the tool 

but keep a similar pattern then it is likely that the overall performance will be similar. 
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a) Secchi – 2011 annual mean, 2 runs, 50 b) Secchi – 2015 annual mean, 2 runs 50 

reefs reefs. 

Figure 8. Multiple optimisation runs of the same core environmental gradient. Each panel 

shows 2 runs of the optimiser for exactly the same gradient data, while the two panels show 

the results when calculated for a wet year (2011) verses a dry year (2015). Since the optimiser 

is stochastic (driven by random evolution) the optimised solutions are different in each run. 

The large scale patterns of the survey design are however robust and repeatable. In the 

northern half of the Reef the best survey design contains roughly evenly spaced pairs of 

inshore and offshore monitored reefs, where the locations are perpendicular to the gradient. In 

the southern half of the Reef the gradients are more complex, but there is a consistent pattern 

between all four runs of the optimisation. 
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5 RESULTS – PERFORMANCE OF EXISTING VERSES EXPERT 

REDESIGN VERSES OPTIMISED SURVEY DESIGNS 

A three-way comparison was performed between the existing LTMP / MMP / JCU coral reef 

monitoring (Australian Institute of Marine Science 2014; Australian Institute of Marine 

Science 2015; Williamson et al. 2014), an expert adjustment to this existing survey design to 

improve its coverage in Cape York, and a survey design developed from scratch by the 

Monitoring Site Planner optimisers. Figure 9 shows the three survey designs under 

consideration and Figure 10 shows their corresponding performance as measured against 

each of the criteria.  

5.1 Some criteria are harder than others 

There are several things to note about these results. First we see that the performance of 

each criterion is significantly different, with current and zoning having the highest (and thus 

worst) criteria scores, regardless of the survey design. Some criteria are harder to score well 

on than others.  

All survey designs received a low (good) score for the temperature gradient. This gradient is 

relatively smooth and thus is easy to recreate, even without many monitoring locations, or 

perfect placement of those locations.  

The current criterion is more difficult to score well, as the currents are dominated by complex 

tidal flows through the reef matrix resulting in high variability between even close reefs. This 

low spatial correlation makes it difficult for any survey design to perform well on. Another 

reason why the current score is poor even for the optimised design is that reefs with high 

currents are excluded from the pool of potential monitoring locations.  

The Marine Park Zoning + sub-bioregions criterion is difficult as the average quota was set 

to 2 reef pairs per sub-bioregion in this analysis. A perfect score could only be achieved with 

a survey design with over 320 monitored reefs (average of 2 pairs in each of the 81 sub-

bioregions). In hind-sight this quota is probably set too high making it difficult for survey 

designs to score well. While the good score is hard to achieve, any pairing of reefs in the 

survey design will be rewarded by this criterion. 

Due to differences in relative difficulty of the criteria it is more important to look for relative 

improvements in each criterion across survey designs rather than the absolute criteria 

scores. This is true for all the criteria except the historic data criteria, where the score tells us 

the percentage historic data retained by the survey design. This can be calculated with (1-

historic data criteria score)*100 and so a historic data criteria score of 0.1 means the survey 

design contains locations that have 90 per cent of all historic data. 

 



20 

 

 

a) Existing survey design.  b) Expert opinion adjustment.  c) Multi-criteria optimised.  

(159 reefs) Existing-V5- (169 reefs) Expert-V5-169 (159 reefs).  
159 Adjusted by Angus Thompson, All-v7-h4-200a-thin-159 
LTMP, MMP, JCU RAP Manuel Gonzalez Rivero to 

Based on the following provide more coverage in Cape Note: all monitoring sites criteria and weights: York. Allocation strategy: were mapped to Authority 
Criteria Weight reef boundaries 1. Two Blue/Green pairs per 

bioregion (4 reefs). Preference Max Current 0.5 
 

for pink zones. Secchi 2011 0.5 

2. Big/long bioregions have Secchi 2015 0.5 

more pairs. Temperature 

(summer) 0.8 
3. Strong preference for existing 

Temperature 
sites. 

(winter) 0.2 
4. Bioregions with excessive 

NRM 0.1 
existing pairs had reefs 

Zoning 2 
removed. 

Historic 4 
5. Bioregions without enough 

200 reef monitoring reefs had pairs added. 
program developed with 

6. Reef structure, existing other 
the Genetic Algorithm 

surveys and logistics used to 
optimizer, followed by the 

choose new reefs. 
thinning out optimiser 

7. Inshore reefs retained based down to 159 reefs to 
on water quality gradients, match the size of the 
tourism sites, urban areas and existing survey design. 
reporting regions. 

8. Includes all JCU RAP sites 
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(needs further review) 

Figure 9 Map of three survey designs under consideration. Green dots correspond to existing 

sites, yellow dots are new sites and crosses (x) are removed existing sites. 

 

Figure 10. Comparison between the criteria performance of the three survey designs. 

(Existing-V5-159, existing coral reef monitoring; Expert-V5-169, expert adjustment to improve 

coverage in Cape York, All-v7-200a-h4-thin-159, optimised by the Monitoring Site Planner tool). 

Note 1: Lower the score the better. Note 2: The existing coral reef monitoring does not capture 

all historic data because some historic manta tow surveys don’t align with the current fixed 

monitoring sites. 

5.2 Choosing weights for optimisation 

Understanding that some criteria are more difficult than others, combined with how important 

a criterion is, determines the appropriate weights that should be applied to optimising a 

survey design. In the case of the multi-criteria optimised design shown in Figure 9c) the 

weights were chosen to ensure that a high amount of historical data would be retained 

(weight of 4), it should try really hard to create reef pairs for zoning comparison (weight 2), it 

should consider a fair distribution of locations across NRMs, but not with high priority (weight 

0.1), the secchi and temperature environmental gradients are nominally important (weight 1) 

and that of the current environmental gradients should be down weighted (weight of 0.5) 

because it is lower priority. Even with this down weighting the current will have a strong 

effect on the optimisation as this criterion has a high score and is difficult to meet. 

The resulting optimised solution in Figure 9c) performs well under the criteria that it was 

tested against, however, a review of the survey design highlights some limitations. It has 

chosen 4 inshore sites in Cape York that are quite close to the mainland. These sites are 

probably unsuitable due to the potential risk from crocodiles. The optimiser has also chosen 

quite a few sites on the outer southern reefs as this area has reasonably high current flows 

allowing a better reconstruction of the current environmental gradient. In effect the optimiser 
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found a set of reefs that were just below the maximum current allowed for safety reasons. It 

is therefore likely that on closer examination many of these sites will be impractical for 

surveying. These issues could be resolved with improved logistic modelling. 

5.3 Monitoring survey design performance is a trade-off with 

historic data 

From Figure 10 we can see that the expert adjustment for the monitoring program improved 

the performance for all criteria, but at the expense of losing some locations with historic data. 

The goal of this redesign was to improve coverage in Cape York, but without significantly 

increasing the number of monitored locations. Approximately 20 existing sites were moved, 

and an additional 10 sites were added, resulting in better spatial coverage of the overall 

program. This broader spatial coverage is what resulted in a better performance for the 

current, temperature, secchi, NRM and zoning, but resulted in almost a 14 per cent loss of 

historic data. 

The survey design developed by the Monitoring Site Planner optimisers is also constrained 

by the trade-off between historic data and overall monitoring performance. It, however, 

managed to significantly outperform the manual redesign in all criteria, whilst using fewer 

monitoring locations at the expense of losing only 10 per cent of historic data. The optimiser 

moved more historic sites, but only those with the least historic data.  

 

6 CONCLUSION 

The Monitoring Site Planner tool was developed to capture the complex interplay between 

the various competing criteria for what makes for a good coral reef monitoring program for 

the Reef. We have developed a number of robust criteria and optimisation techniques that 

allow new monitoring survey designs of almost any size to be developed and evaluated. We 

demonstrated that the optimisation features allow the creation of survey designs that 

outperform manual designs against the criteria coded into the tool. 

The Monitoring Site Planner does not model the full dynamics of the Reef and thus any 

recommendations from its multi-criteria analysis must be carefully considered by experts for 

logistical considerations and factors not modelled by the tool.  

The final criteria, including any new criteria, and their weights, along with and “must have” 

reefs should be developed in close consultation with RIMReP stakeholders and the Coral 

Reef Expert Group. The Monitoring Site Planner was set up to evaluate and design new 

shallow coral reef monitoring programs, based largely on current monitoring techniques and 

technologies. In the future the criteria and reef database could be extended to assist in the 

design of monitoring other coral reef habitats such as deep reefs, or reef tops. 
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7.1 Appendix – Interpolation models available for the 

Environmental Gradients criteria 

The Environmental Gradients criteria takes samples of the environmental gradient at the 

monitoring locations then uses an interpolation model to estimate the value at all coral reefs 

in the Reef. The Monitoring Site Planner provides a range of simple and robust interpolation 

models for this purpose.  

Inverse Distance Weight interpolation uses n nearest neighbour points to estimate the value 

at a location with an unknown value. The estimate is based on the weighted sum of the 

neighbouring locations with a known value. The value of the neighbours is weighted 

proportional to the inverse distance (p=1) or the inverse distance squared (p=2) from the 

neighbour to the interpolation location. The tool was setup with a range of simple 

interpolation models to allow the effect of changing the models on the resulting 

recommended survey design. After initial investigations it was determined that in most 

conditions the Inverse Distance Weight (n=6, p=2) performed best and thus was used for all 

survey design optimisation.  

Table 2. Interpolation models available in the Monitoring Site Planner tool as part the 

Environmental Gradient criteria.   

Interpolation Model Notes 

Nearest neighbour Interpolated location gets the value of the closest known 

value. Added to the tool for comparison reason. 

Inverse Distance Weight (n=4, 

p=1) 

4 closest neighbours, weighted by inverse distance. 

Inverse Distance Weight (n=4, 

p=2) 

4 closest neighbours, weighted by inverse distance 

squared. This is the best model with few monitoring 

locations (< 50). 

Inverse Distance Weight (n=6, 

p=1) 

6 closest neighbours, weighted by inverse distance. 

Inverse Distance Weight (n=6, 

p=2) 

6 closest neighbours, weighted by inverse distance 

squared. This is the best model for > 50 monitoring 

locations. 
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7.2 Appendix – Must-have reefs 

The following is the set of “Must Have” reefs that were included in the optimised multi-criteria 

survey design presented in section 5. When enabled, they are reinserted after each 

generation of the optimisation to ensure they are never removed from the survey design.  

Table 3 List of reefs that should be included in any reasonable monitoring program.  These 

correspond to sites that are of high value, but this value is not captured in any of the existing 

criteria. 

Location Reason for inclusion Expert 

Agincourt Reefs (No 1) (15-

099c) 

Historic data close to AIMS weather 

station 

Eric Lawrey, 

Kate Osborne 

Low Islands Reef (16-028) History, tourism Kate Osborne 

Orpheus (Goolboddi) Island 

Reef (No 5) (18-049e) 

Research station, NE reef to best 

match LTMP photo transects 

Hugh Sweatman, 

Kate Osborne 

Pandora Reef (18-051) 

Early AIMS science (historic cross shelf 

transect, TSV baseline) Kate Osborne 

Myrmidon Reef (18-034) 

Early AIMS science (historic cross shelf 

transect, TSV baseline) Kate Osborne 

John Brewer Reef (18-075) Location of museum of underwater art Kate Osborne 

Carter Reef (14-137) 

Approximate oceanic reefs for global 

comparison Kate Osborne 

Green Island Reef (16-049) Tourism Eric Lawrey 

Gannett Cay Reef (21-556) Historic data Kate Osborne 

Heron Reef (23-052a) Research station 

Hugh Sweatman, 

Kate Osborne 

North Keppel (Ko-no-mie) 

Island Rf (No 2) 23-004b 

Close proximity to AIMS weather 

station Eric Lawrey 

One Tree Island Reef (23-

055a) Research station 

Hugh Sweatman, 

Kate Osborne 

Rib Reef (18-032) 

Early responder reef (crown-of-thorns 

starfish); Early AIMS science (historic 

cross shelf transect, TSV baseline) 

Hugh Sweatman, 

Kate Osborne 

No Name Reef (14-139) 

Approximates oceanic reefs for global 

comparison Kate Osborne 

Davies Reef (18-096) 

AIMS weather station, easy logistics, 

close to TSV. Kate Osborne 

Lady Musgrave Reef (23-

082a) Tourism, AIMS weather station Kate Osborne 
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7.3 Appendix – Infilling of raw environmental gradient data 

The Environmental Gradients criterion evaluates the performance of a given survey design 

by determining how well the environmental gradient (temperature, secchi, etc.) can be 

reconstructed at all reefs on the Reef from just the measurements taken at the monitoring 

locations. This criterion requires we have estimates at all reef locations in order for this to 

work. Many of the raw environmental gradient datasets contained holes around islands or 

reefs. These needed to be infilled before they could be used in the Monitoring Site Planner. 

A spatial moving average filter was used to fill these holes with estimates from surrounding 

pixels. 

    
Example close up view of the raw 

SSTAARS temperature showing that the 

pixels around islands and the mainland 

have been excluded. This is presumably   

to remove contamination from land 

temperatures in the water temperature 

estimates. 

A 3 pixel radius mean filter was used to  

infill the data around islands and along    

the mainland.  

Close of the raw mean annual secchi 

before infilling. The holes in the data 

correspond with reef areas that are 

excluded in the remote sensing to due to 

contamination from shallow water 

reflections.  

  
A 5-pixel radius mean filter was used to fill 

in nearly all the holes. The dots correspond 

with reef centroids where the data is 

sampled for the reef database. The infilling 

approximates sampling the waters 

surrounding each reef. 
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Figure 11. Infilling of the temperature and secchi source data to ensure that all reefs have an 

estimate of these environmental gradients.  
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